First results from the full-scale prototype for the Fluorescence detector Array of Single-pixel Telescopes

John Farmer for the FAST collaboration:

Toshihiro Fujii, Max Malacari, Justin Albury, Jose A. Bellido, John Farmer, Aygul Galimova, Pavel Horvath, Miroslav Hrabovsky, Dusan Mandat, Ariel Matalon, John N. Matthews, Maria Merolle, Xiaochen Ni, Libor Nozka, Miroslav Palatka, Miroslav Pech, Paolo Privitera, Petr Schovanek, Stan B. Thomas, Petr Travnicek

(https://www.fast-project.org)
Outlines

- FAST Motivation / Concept
- FAST Prototypes:
 - 2014 single-pixel telescope
 - 2016 full-scale prototype
 - 2017 iterative designs
- Data and Simulations
 - UHECRs, TA CLF (UV laser)
 - FAST-only reconstruction
- Future Plans
Lack of statistics in highest-energy UHECR bins
- Need a detector with huge aperture

Discrepancies in TA-Auger energy spectra at high energies

Interesting behaviors at high energies:
- Increase in elongation rate?
- GZK recovery?
- Different Auger/TA GZK thresholds?
Nitrogen fluorescence detectors
common instruments for UHECR measurement

Finely-pixelated camera:
- ex: Auger FD (440 PMTs), TA FD
- Expensive!
- High coverage difficult

FAST: 4 pixels
- Low-cost design
- Embraces hybrid detection:
 - Geometry / Timing information: SD/FD array
Comparison of FAST / TA FD field of view
Huge-aperture FD Array targeting the highest-energy UHECRs

- Each telescope: 4 PMTs, $30° \times 30°$ field of view (FoV)
- Each station: 12 telescopes, 48 PMTs, $30° \times 360°$ FoV

Triangular grid with 20km spacing

- 500 stations \Rightarrow 150,000 km2
 - Auger: 3,000 km2
 - TA: 762 km2

Not possible to entertain FD Array with expensive, highly-pixelated cameras
- Stable operation under high background
- Detection of 16 highly significant showers

2016: first Full-Scale FAST prototype
- Remote operation

2017: 2 iterative prototypes to be assembled in September
1st Full FAST Prototype (2016)

- 4 8-inch PMTs (Hamamatsu R5912-03MOD)
 - Calibrated at UChicago
- UV band-pass filter (ZWB3)
- Segmented mirror of 1.6 m diameter
 - D. Mandat et al, 2017 JINST 12 T07001
- Externally triggered by TA FD
 - Shared field of view with Black Rock Mesa site

DAQ System:
- Remotely Operated
- HV Monitoring System
1st Prototype Remote Operation

- Fully remote operation
 - Automated shutdown procedure
 - Monitoring via IP camera
- Total operation time > 200h
- Search for reconstructed events in shared field-of-view with TA FD

18 events found by January (120 hours)

Highest event: $E=10^{18.55}$ eV, $R_p=3.0$ km by TA FD
2017 FAST Prototypes

- 3rd FAST prototype height reduced
- Scan in azimuth over TA CLF (vertical UV laser)
- Upgrade electronics for self-triggering with FAST
- Investigating option for FAST housing: half-size shipping container
 ✦ Cheap vs cost of custom shed
 ✦ Currently in negotiation with companies in Chicago
TA CLF Measurement

- Ultraviolet vertical laser at a distance of ~21 km, $\lambda = 355$ nm
- Equivalent to $\sim 10^{19.5}$ eV UHECR

Single event

<table>
<thead>
<tr>
<th>PMT 1</th>
<th>PMT 2</th>
<th>PMT 3</th>
<th>PMT 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Composite event

<table>
<thead>
<tr>
<th>PMT 1</th>
<th>PMT 2</th>
<th>PMT 3</th>
<th>PMT 4</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Simulation vs. data
UHECR First Light

TAFD reconstruction
$\log E = 18.08$, $R_p = 2.40$ km

Close, Cherenkov-dominated event
FAST Simulated Reconstructions

FAST hybrid reconstruction

Geometry (given by TASD)

Shower Profile (FAST)

✦ Energy: ±10%, Xmax : ±35 g/cm² at $10^{19.5}$ eV.

✦ Comparable with current FDs

FAST only reconstruction

56 EeV Simulation

✦ Simulated reconstruction with FD array of 20km spacing

✦ Under development
Summary and Future Plans

- Installed first full-scale FAST prototype in 2016
- Installing two more telescopes in September 2017 (75 x 25 degree FoV)
 - Upgrade electronics for self-triggering
 - Add all-sky camera for weather monitoring
- Plan to move one telescope to Argentina for TA-Augur cross-calibration
Backup
1st Prototype PMT Calibrations

KICP @ UChicago

Single photo electron

Detection efficiency (QE×CE)

YAP pulser (YAlO₃:Ce scintillator + ²⁴¹Am source) attached on each PMT surface

TA UV LED used for on-site calibration

used in AIRFLY experiment
Airplane events

- External trigger from TA includes triggers on airplane events
- Overwhelmingly common...