Searching for Sterile Neutrinos at J-PARC with JSNS²

Johnathon Jordan - University of Michigan TeVPA 2017 August 10, 2017

Status of Sterile Neutrino Searches

- Several anomalous results in last few decades:
 - LSND (3.8**σ**)
 - MiniBooNE (3.8σ)
 - Gallium/SAGE (2.7 σ)
 - Reactor (3.0**σ**)
- Results do not fit the standard 3 neutrino paradigm (solar + atmospheric)
- Also many null results (MINOS, MiniBooNE, and IceCube)
- Possible oscillation to sterile neutrinos
- JSNS² will be a direct test of past anamolous results

Global fit to short baseline and lceCube data using a 3+1 model.

arxiv:1607.00011

JSNS² Experiment

- The J-PARC Sterile Neutrino Search at the J-PARC Spallation Neutron Source (JSNS²)
- Will look for sterile neutrinos using:

 $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$

- Located at J-PARC Materials and Life Sciences Facility (MLF)
- 24m baseline, will look for oscillations with:

 $\Delta m^2 \approx 1 \ eV^2$

Use distinct IBD signature to identify candidate events

$$\bar{\nu}_e + p \to e^+ + n$$

Technical Design Report (TDR): Searching for a Sterile Neutrino at J-PARC MLF (E56, JSNS²)

S. Ajimura¹, M. K. Cheoun², J. H. Choi³, H. Furuta⁴, M. Harada⁵, S. Hasegawa⁵,
Y. Hino⁴, T. Hiraiwa¹, E. Iwai⁵, S. Iwata⁷, J. S. Jang⁸, H. I. Jang⁹, K. K. Joo¹⁰,
J. Jordan⁶, S. K. Kang¹¹, T. Kawasaki⁷, Y. Kasugai⁵, E. J. Kim¹², J. Y. Kim¹⁰,
S. B. Kim¹³, W. Kim¹⁴, K. Kuwata⁴, E. Kwon¹³, I. T. Lim¹⁰, T. Maruyama^{*15},
T. Matsubara⁴, S. Meigo⁵, S. Monjushiro¹⁵, D. H. Moon¹⁰, T. Nakano¹, M. Niiyama¹⁶,
K. Nishikawa¹⁵, M. Nomachi¹, M. Y. Pac³, J. S. Park¹⁵, H. Ray¹⁷, C. Rott¹⁸, K. Sakai⁵,
S. Sakamoto⁵, H. Seo¹³, S. H. Seo¹³, A. Shibata⁷, T. Shima¹, J. Spitz⁶, I. Stancu¹⁹,
F. Suekane⁴, Y. Sugaya¹, K. Suzuya⁵, M. Taira¹⁵, W. Toki²⁰, T. Torizawa⁷, M. Yeh²¹,

¹Research Center for Nuclear Physics, Osaka University, Osaka, JAPAN ²Department of Physics, Soongsil University, Seoul 06978, KOREA ³Department of Radiology, Dongshin University, Chonnam 58245, KOREA ⁴Research Center for Neutrino Science, Tohoku University, Sendai, Miyagi, JAPAN ⁵ J-PARC Center, JAEA, Tokai, Ibaraki JAPAN ⁶University of Michigan, Ann Arbor, MI, 48109, USA ⁷Department of Physics, Kitasato University, Sagamihara 252-0373, Kanagawa, JAPAN ⁸Gwanqju Institute of Science and Technology, Gwanqju, 61005, KOREA ⁹Department of Fire Safety, Seoyeong University, Gwangju 61268, KOREA ¹⁰Department of Physics, Chonnam National University, Gwanqju, 61186, KOREA ¹¹School of Liberal Arts, Seoul National University of Science and Technology, Seoul, 139-743, KOREA ¹²Division of Science Education, Physics major, Chonbuk National University, Jeonju, 54896, KOREA ¹³Department of Physics and Astronomy, Seoul National University, Seoul 08826, KOREA ¹⁴Department of Physics, Kyungpook National University, Daegu 41566, KOREA ¹⁵High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, JAPAN ¹⁶Department of Physics, Kyoto University, Kyoto, JAPAN ¹⁷University of Florida, Gainesville, FL, 32611, USA ¹⁸Department of Physics, Sungkyunkwan University, Gyeong Gi-do, KOREA ¹⁹University of Alabama, Tuscaloosa, AL, 35487, USA ²⁰Colorado State University, Tuscaloosa, AL, 35487, USA ²¹ Brookhaven National Laboratory, Upton, NY, 11973-5000, USA

J-PARC RCS Beam

8/10/2017

Detector Location

8/10/2017

J-PARC MLF/Beam

JSNS² Detector

Intrinsic Background

Dominant irreducible intrinsic background:

$$\mu^- \to e^- + \bar{\nu}_e + \nu_\mu$$

Background shape is different than the signal shape for all oscillation scenarios.

M. Harada et al, arXiv:1310.1437 [physics.ins-det]

Backgrounds

- Other major background is from fast (10-100 MeV) neutrons:
 - Cosmic neutrons
 - Beam neutrons (acccidentals)
- Reject cosmic neutrons with pulse shape discrimination (PSD)
- Beam and cosmic based background have been measured *in situ*

Average Waveforms

Sensitivity

8/10/2017

KDAR Neutrinos

236 MeV ν_{μ} from $K^+ \rightarrow \mu^+ \nu_{\mu}$ (BR = 63.5%) decay at rest

- Can be used as a standard candle for reconstruction and cross sections near 236 MeV
- Probe the nucleus with a known energy, weak-interaction-only particle
- Measure energy transfer to test underlying nuclear models

Expected E	vent Rate
------------	-----------

$D_{ab} = t_{ab} = (a_{ab} = a_{b})$	Transt (mar)	E	D'-t	OPC M-V CC
Detector (source)	larget (mass)	Exposure	Distance from source	236 MeV ν_{μ} CC events
$JSNS^2$ (JPARC-MLF)	Gd-LS (17 ton)	1.125×10^{23} POT (3 years)	24 m	30-60k

Timeline and Outlook

- JSNS² was conceived in 2013.
- The experiment received Stage 1 approval in Feb. 2015.
- Funding for construction of the first 17-ton detector received in June 2016.
- TDR submitted in May for Stage 2 approval
- Construction has already started
- First data in late 2018

TDR - arXiv:1705.08629

Questions

Backup

LSND Comparison

	LSND	JSNS ²	Advantage of JSNS ²
Detector Mass	167 Tons	17 Tons	
Baseline	30 m	24 m	
Beam Kinetic Energy	0.8 GeV	3.0 GeV	Allows for KDAR measurements.
Beam Power	0.056 MW	1.0 MW	Much more intense beam
Beam Pulse	600 µs, 120 Hz	80 ns (x2), 25 Hz	300 times less steady state background for IBD.
Capture Nucleus	H (2.2 MeV)	Gd (~8 MeV)	Shorter capture time, higher signal to noise ratio.

SBN Comparison

8/10/2017

Supernova Neutrinos

- Neutrino-driven wind is important in supernova simulations
- We need to know the neutrino nucleus cross sections better
- JSNS² can measure the neutrino nucleus rate for neutrinos on carbon 12
- With 3 years of data, we can measure the cross section to within 6%

Decay at rest pions + muons (dashed) Supernova neutrinos (solid) Units of flux are arbitrary