



# The Cherenkov Telescope Array On behalf of the CTA Consortium



## Nepomuk Otte

School of Physics & Center for Relativistic Astrophysics Georgia Institute of Technology

# Astrophysics and more in the VHE Band







Nepomuk Otte

# **Differential Flux Sensitivity**





Major sensitivity improvement & wider energy range

-> Factor of ~x10 increase in source population



Nepomuk Otte

## Galactic Discovery Reach



Survey speed: x300 faster than current instr.



## From current arrays to CTA









## CTA Design (S array)

#### science optimization under budget constraints

#### Low energies

Energy threshold 20-30 GeV 23 m diameter 4 telescopes (LST's)

#### **Medium energies**

100 GeV – 10 TeV 9.7 to 12 m diameter 25 telescopes (MST's/SCT's)

#### High energies

Up to 300 TeV 10 km<sup>2</sup> area at few TeV 4m diameter 70 telescopes (SST's)



## Medium-Sized 2-Mirror Telescope (SCT)





9.7 m primary
5.4 m secondary
5.6 m focal length, f/0.58
50 m<sup>2</sup> mirror dish area
PSF better than 4.5' across 8° FOV

8° field of view 11328 x 0.06° SiPM pixels TARGET readout ASIC

*SCTs can augment / replace MSTs in either S or N proposed US contribution* 

- → Increased γ-ray collection area
- $\rightarrow$  Improved y-ray ang. resolution
- → Improved DM sensitivity



## **SCT: Superior Imaging**



#### Better optical performance across field of view $\rightarrow$ use higher resolution camera



### Prototype construction in Arizona

http://cta-psct.physics.ucla.edu live web cam

### 05-15-2017 10:14:34

٩

## Mirrors











 All primary panels completed and delivered

- S1: 4 of 20 pre-shaped glass foils sent from Flabeg to Media Lario for assembly into panels
- S2: 39 of 40 glass foils sent from Flabeg to Media Lario for panel assembly
- Metrology of S2 panels underway before coating
- Coating of all S1 and S2 panels to be completed this summer
- Mounting on telescope expected in fall 2017



## Camera









## **Camera Modules**





#### module cage

 Spring-loaded slip joint design allows thermal breathing without distorting the focal plane.

#### front-end electronic boards

- Preamplifiers
- TARGET7 digitizer and trigger
- SiPM power distribution and trim
- SiPM temperature controller

#### focal plane module

- Silicon photomultipliers
- Height registry
- Temperature controlled



# First Light: LED Flasher





#### 16 modules (1024 channels) installed

Flasher design based on STFC funded GCT calibration system, provided by Durham University.



Nepomuk Otte

# **CTA Phases & Timeline**





- 2016-7: Hosting agreements, site preparations start
- 2018: Start of construction
- Funding level at ~65% required for baseline implementation
  - start with threshold implementation
  - additional funding & telescopes needed to complete baseline CTA
- Construction period of ~6 years
- Initial science with partial arrays possible before construction end



Nepomuk Otte

## Summary



### • CTA is the next generation imaging atmospheric Cherenkov array

- Ten times improvement in sensitivity will truly open the VHE sky (milliCrab sensitivity)
- Resolve transients < 1 minute</p>
- •2 arcminute angular resolution @ 1 TeV
- Open observatory
  - Data released to public after proprietary period
  - Only member countries can propose observations and work with proprietary data
- Prototyping of all telescopes is well under way
   PSCT completed by the end of the year



# Backup





# Small Telescopes (SSTs)



- 3 different prototype designs
- 2 designs use two-mirror approaches (Schwarzschild-Couder design)
- All use SiPM as photosensors
- 7-9 m<sup>2</sup> mirror area, FOV of 9°



SST-1M Krakow, Poland SST-2M ASTRI Mt. Etna, Italy SST-2M GCT Meudon, France







23 m diameter
390 m<sup>2</sup> dish area
28 m focal length
1.5 m mirror facets

4.5° field of view 0.1° pixels Camera Ø over 2 m

*Carbon-fiber structure for 20 s positioning* 

Active mirror control

4 LSTs on South site 4 LSTs on North site

Prototype construction Underway (La Palma)

## Medium Telescope (MST)



100m<sup>2</sup> mirror dish area 16 m focal length 1.2 m mirror facets

8° field of view ~2000 x 0.18° pixels

25 MSTs on South site 15 MSTs on North site

Prototype at DESY (Berlin)





# Gamma-Ray Instruments





Satellites Fermi-LAT Georgia Cherenkov telescopes Like VERITAS and CTA

Nepomuk Otte

Water Cherenkov detectors Like HAWC

## Gamma Ray Telescopes (2015)





Fermi



# The VHE Sky is bright





### **CTA Key Science**



#### **Cosmic Particle Acceleration**

How and where are particles accelerated? How do they propagate? What is their impact on the environment?



#### **Probing Extreme Environments**

Processes close to neutron stars and black holes? Processes in relativistic jets, winds and explosions? Exploring cosmic voids



#### **Physics frontiers - beyond the Standard Model**

What is the nature of Dark Matter? How is it distributed? Is the speed of light a constant for high-energy photons? Do axion-like particles exist?





# Planning for the Future



### What do we know, based on current instruments?

### Great scientific potential exists in the VHE domain

Many more sources & deeper probes for new physics

### **IACT** technique is very powerful

Have not yet reached its full potential -> large Cherenkov array

### **Exciting science in both Hemispheres**

Argues for an array in both S and N

### **Open observatory -> Substantial reward**

> Open data/access, MWL connections to get the best science

### International partnerships required by scale/scope

CTA must develop the instrument and the observatory



# Transient Capabilities (<100 GeV)



Georgia Tech

# **Benefits of Large IACT Arrays**



### **Detection of more photons**

→ Larger collection area

Better spectra, fainter sources, faster transients

### Better measurement of air showers and hence primary gammas

→ Improved angular resolution

→ Improved background rejection

Better spectra, fainter sources, faster transients, better morphology studies



Simulation: Superimposed images from 8 cameras



# **Telescope Specifications**



#### **SiPM Cameras**

#### 3 SST types

|                                    | LST<br>"large"       | MST<br>"medium"      | SCT<br>"medium 2-<br>M" | SST<br>"small"     |
|------------------------------------|----------------------|----------------------|-------------------------|--------------------|
| Number                             | 4 (S)<br>4 (N)       | 25 (S)<br>15 (N)     | ≤ 24<br>(S and N)       | 70 (S)             |
| Energy<br>range                    | 20 GeV to<br>1 TeV   | 200 GeV to<br>10 TeV | 200 GeV to<br>10 TeV    | > few TeV          |
| Effective<br>mirror area           | > 330 m <sup>2</sup> | > 90 m <sup>2</sup>  | > 50 m <sup>2</sup>     | > 5 m²             |
| Field of view                      | > 4.4°               | > 7°                 | > 7°                    | > 8°               |
| Pixel size<br>~PSF θ <sub>80</sub> | < 0.12°              | < 0.18°              | < 0.07°                 | < 0.25°            |
| Positioning<br>time                | 50 s,<br>20 s goal   | 90 s,<br>60 s goal   | 90 s,<br>60 s goal      | 90 s,<br>60 s goal |
| Target<br>capital cost             | 7.4 M€               | 1.6 M€               | < 2.0 M€                | 500 k€             |



# Flux Sensitivity (Crab Units)

Differential sensitivity (C.U.)



30

erenkov telescope array

## **Angular Resolution**





## LA PALMA



- Canary Islands, Spain
- Observatorio del Roque de los Muchachos
- Existing observatory, under management by Instituto de Astrofisica de Canarias (IAC)
- Site of LST prototype & existing MAGIC telescopes



## **ESO/PARANAL**

- Atacama Desert, Chile
- Below Cerro Paranal
- Existing observatory, under management by European Southern Observatory (ESO)
- Near a set of existing (VLT) and future (ELT) telescopes

Cerro Armazones E-ELT Vulcano Llullaillaco 6739 m, 190 km east

Proposed Site for the Cherenkov Telescope Array

Cerro Paranal Very Large Telescope





## **CTA Consortium**



### **CTA is being developed by the CTA Consortium:**



31 countries, ~1270 scientists, ~180 institutes, ~420 FTE



Nepomuk Otte

## Key Science Projects (KSPs)



# Imaging Atmospheric Cherenkovera Technique



Georgia

**Tec** 



#### Huge light pool of 100,000 m<sup>2</sup>

A very faint flash of blue light that last a couple of nanoseconds

150 Cherenkov photons / m<sup>2</sup> for 1 TeV gamma ray

VHE gamma rays come in small numbers: Less than one gamma-ray per square meter per year











## Imaging Atmospheric Cherenkov Technique

Image in camera

Pulse lasts a few nanoseconds

Effective area = Cherenkov light pool~10<sup>5</sup> m<sup>2</sup>!

