

EXPERIMENT

Search for Axion Dark Matter

明

William Wester **Fermilab** On behalf of the ADMX Collaboration

Gen 2 ADMX Projected Sensitivity

Axions

Raffelt

• Postulated in the late 1970s as a consequence of not observing CP violation in the strong interaction.

$$
L_{CP} = -\frac{\alpha_s}{8\pi} \underbrace{(\Theta - \arg \det M_q)}_{0 \le \overline{\Theta} \le 2\pi} \text{Tr } \tilde{G}_{\mu\nu} G^{\mu\nu}
$$

- The measurement of the electric dipole of the neutron implies $\overline{\Theta}$ < ~10⁻¹⁰. => Strong CP Problem of QCD
	- This is very much on the same order of an issue with the Standard Model as the hierarchy problem that motivates supersymmetry.
	- Axions originate from a new broken symmetry that explains small Θ

Bjorken "Axions are just as viable a candidate for dark matter as sparticles" Wilczek "If not axions, please tell me how to solve the Strong-CP problem" Witten "Axions may be intrinsic to the structure of string theory"

WW+KvB

Axions

• Axions "clean-up"

WITH A TRACEANING POWER the strong-CP problem!

Θ is near zero due to the breaking of a new symmetry where the axion field relaxes to a minimum

Roberto Peccei Helen Quinn 2013 JJ Sakuri Prize

Peccei – Quinn Symmetry

Explaining the vanishing neutron EDM

Axion mass = harmonic oscillator frequency

Axion mass + γ coupling

The axion, an excitation of the field, acquires a mass inversely proportional to the Peccei-Quinn symmetry breaking scale.

Gives rise to diagonal relationship the limit plot mass vs coupling constant. Note: small << 1eV masses and large $> 10^{10}$ GeV scales

E/N is related to the E&M and color anomalies and is model dependent giving a band of allowed values in the diagonal relationship. A model involving Heavy Quarks (KSVZ) and a model involving Higges (DSFZ) help define the region of interest.

CDM Direct Detection

June WIMP Wind 220km/s galactic plane Cygnus 60° **December**

Solar system is moving at ~200km/s through a dark matter halo with a density of ~ 0.45 GeV/cm³.

Axion searches look for the axion field coherently interacting with a sensitive apparatus

Suppressing backgrounds such as electronic and thermal noise is key in having sensitivity.

> Phase coherent over 10-3s or 100s of meters

Axion Haloscope

10 Aug 17 W. Wester, Fermilab, TeVPA, The Ohio State University 10

(energy)

ADMX Experiment

Magnet … **Superconducting** with 8 Tesla field

Cavity … Copper with actuated tuning rods

ADMX Experiment

- Tunable microwave cavity in B field looking for dark matter axions converting into a detectable photons.
- Very small signal … needs the world's most sensitive "radio"

High Q cavity, magnet, dilution refrigerator (new)

10 Aug 17 W. Wester, Fermilab, TeVPA, The Ohio State University 12

SQUID for receiver

Cavity tuning

 0.2 0.7

Mode crossings are a definite complication

Dilution Refrigerator installed above ADMX Cavity

Enabling technology: SQUID amplifiers

Operations

The cavity frequency is scanned over a region until the desired SNR is achieved We then examine the combined power spectrum for signs of excess Excess power regions can be statistical fluctuations, *synthetically injected signals*, RF interference, or axions Excess power regions are rescanned to see if they persist Persistent candidates are subjected to a variety of confirmation tests: for example:

Signal distributed over many sub-spectra: a good threshold candidate (but did not persist in rescan)

magnet field changes or probing with other cavity modes

After a persistent signal C

Confirmation (~minutes):

Does it behave as expected vs B² Rule out all other sources

Axion Astronomy

Velocity and broadening of the line Look for structure like infalls etc. Annual modulation (~hr integration)

Current Status

I can report that since the run started in January, ADMX is scanning at DFSZ sensitivites! **CALL Starts GMT Starts**

Preliminary Results

Near term plans

ADMX Prototype for Multicavity Systems

¹⁰ Aug 17 W. Wester, Fermilab, TeVPA, The Ohio State University 21

ADMX G2 Multicavity Systems

ADMX G2, next steps Multicavity Systems

for 2-4 GHz designs being finalized.

4-8 GHz resonators in design.

Beyond 10 GHz: Quantum Computing Technology

Prototype for 10 GHz axion QND detector

Superconducting qubit in field-free bucking coil region acts as an amplitude \rightarrow frequency transducer for **QND** measurements.

Qubit frequency shifts by 10 MHz per photon deposited in axion cavity. Successful "spin-flip" of qubit confirms presence of cavity photon.

Axion scattering cavity dipped into high B-field region

41

Akash Dixit, Aaron Chou, David Schuster (UC), **R&D** in progress

Aaron S. Chou, NU Seminar 10/3/16

Conclusions

ADMX for the first time has the necessary components to probe the QCD axion that would solve the strong-CP problem and could account for most of the dark matter in the universe

ADMX is now taking data at DSFZ sensitivity

ADMX is part of the DOE gen 2 dark matter program. Current funding cycle allows probe up to about 2 GHz. Work with multiple cavities to cover 2-4 GHz and perhaps up to 10 GHz

Above 10 GHz, new technologies such as those enabled by quantum computing and high field magnets may result in a definitive yes-no program on the existence of the axion

ADMX Collaboration: U. Washington, U. Florida, LLNL, UC-Berkeley, PNNL, LANL, NRAO, Washington U., Sheffield U., FNAL

This work is supported by U.S. Department of Energy Office of Science, Office of High Energy Physics, under awards DE-SC00098000, DE-SC0011665, DE-AC52-07NA27344, and DE-AC03-76SF00098, the Heising-Simons Foundation, and the Laboratory-Directed Research and Development programs at Fermi National Accelerator Laboratory, Lawrence Livermore National Laboratory, and Pacific Northwest National Laboratory.