Searching for Ultra-faint Galaxies in Three Years of Data from the Dark Energy Survey

Keith Bechtol (LSST) on behalf of the DES Collaboration TeV Particle Astrophysics 8 August 2017

DES Year 1 Cosmology Results

Dark Energy Survey Year 1 Results: Photometric Data Set for Cosmology

Drlica-Wagner et al. 2017

Dark Energy Survey Year 1 Results: Redshift distributions of the weak lensing source galaxies Hoyle et al. 2017

Dark Energy Survey Year 1 Results: Weak Lensing Shape Catalogues Zuntz et al. 2017

Dark Energy Survey Year 1 Results: The Impact of Galaxy Neighbours on Weak Lensing Cosmology with im3shape Samuroff et al. 2017

Dark Energy Survey Year 1 Results: Curved-Sky Weak Lensing Mass Map Chang et al. 2017

Dark Energy Survey Year 1 Results: Galaxy-Galaxy Lensing Prat et al. 2017

Dark Energy Survey Year 1 Results: Cosmological Constraints from Cosmic Shear Troxel et al. 2017

Dark Energy Survey Year 1 Results: Galaxy clustering for combined probes Elvin-Poole et al. 2017

Dark Energy Survey Year 1 Results: Multi-Probe Methodology and Simulated Likelihood Analyses Krause et al. 2017

Dark Energy Survey Year 1 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing DES Collaboration 2017

See talk by Elisabeth Krause Wednesday morning

Ultra-faint Galaxies: Observer's Perspective

Discovered as arcminute-scale statistical overdensities of individually resolved stars Confirmed as **dark-matter-dominated** galaxies via spectroscopic follow-up (line-of-sight velocity dispersion)

Milky Way Satellite Galaxy Discovery Timeline

See **back-up slides** for highlights from ongoing spectroscopic campaign to confirm new stellar overdensities as **dark-matter-dominated** galaxies

Hundreds of Milky Way Satellites??

Two new ultra-faint galaxy candidates found in first 300 deg² of Hyper-Suprime Cam SSP data (<1% of 4π celestial sphere) that are likely undetectable in any previous survey

Similarly, we estimate that ~half of the ultra-faint galaxy candidates found with DES would not have been detected in a survey of SDSS depth

DES Y3 Footprint: ~5000 deg²

DESY3 Data Quality Improvements

- Complete reprocessing of SV, Y1, Y2, and Y3 data
- Improved image detrending (Bernstein et al. 2017a)
- Improved instrument signature removal (Drlica-Wagner et al. 2017)
- Improved astrometric solution (Bernstein et al. 2017b)
- Photometric calibration
 - Forward Global Calibrations Module (Rykoff et al. 2017)
 - Updated DECam standard bandpass
 - Chromatic corrections and SED-dependent interstellar extinction corrections
- Multi-object, multi-epoch fitting (NGMIX + MOF)

Substantial improvements in nearly every aspect of data processing relative to DES Y1 and Y2 Milky Way satellite searches

Precision Astrometry and Photometry

DECam astrometric model registered to Gaia has RMS errors below 10 mas

(limited by shot noise and atmospheric turbulence)

6.6 mmag (<1%) flux calibration relative to *Gaia*

Burke et al. 2017 arXiv:1706.01542

Source Measurement Strategies

9

Improved Object Classification

Star-Galaxy Separation at Faint Magnitudes

Improved handling of PSF enables more accurate and robust classification

Increasing Depth

Example for Grus II

discovered in DES Y2Q1 dataset using weighted-average measurements

Significant excess of unresolved (PSF-like) objects observed even in faint regime where star-galaxy confusion becomes a challenge

Improved Isochrone Modeling

A population of stars born with a range of initial masses follows a distinct locus in color-flux space called an **isochrone**. Improved measurement of the DECam bandpass has resulted in more accurate transformation of theoretical stellar spectra to observed colors.

Using RR Lyrae to Identify Substructures in the Milky Way Halo

At least one RR Lyrae (variable star standard candle) has been identified in every dSph with published time-series observations

Baker & Willman 2015

Sparse sampling: total of ~50 DES observations distributed across 5 bands over 5 years (typical pulsation periods range from 0.25 to 0.8 days) 13

Using RR Lyrae to Identify Substructures in the Milky Way Halo

At least one RR Lyrae (variable star standard candle) has been identified in every dSph with published time-series observations Baker & Willman 2015

DES Candidate RR Lyrae in Fornax region

100

2.0

1.5

1.0

2.5

Location in Color-Flux Space

PRELIMINARY

DES Y3 Milky Way Satellites **Analysis Projects**

1.0

THE

Distance = 100 kpc

-12

DES Y3 Milky Way Satellites Analysis Projects

Distance = 100 kpc

-12

See talks by Alex Drlica-Wagner for indirect dark matter searches and additional DECam searches

Drlica-Wagner et al. 2015

Bonus Slides

Spectroscopic Follow-up Results: Dynamics

Tucana III tidal tails

Spectroscopic Follow-up Results: Dynamics

Upper bound on velocity dispersion (mass-to-light ratio < 240 M_o / L_o)

A tidally stripped dwarf galaxy?

Spectroscopic Follow-up Results: MACHO Dark Matter constraints

With follow-up spectroscopy, we infer a large mass-to-light ratio in the central regions of Eridanus II

 $M/L_V = 420^{+210} M_{sol}/L_{sol}$

(i.e., large dark matter density)

We can use the survival of this star cluster to place upper limits on the mass of individual dark matter particles. High-mass dark matter particles would disrupt the cluster.

Dwarf galaxy Eridanus II (discovered w/ DES) has it's own small star cluster.

Spectroscopic Follow-up Results: Chemical Abundances

Spectroscopic Follow-up Results: Chemical Abundances

Rapid absorption of free neutrons during explosive event Proposed sites: core-collapse supernovae, neutron star mergers

Observed excess of r-process elements in Ret II relative to other ultra-faint dwarfs (by factor >100) suggests **enrichment by a single (rare) event**

→ Consistent with neutron star merger hypothesis

H			Big Large Super-											He			
В																	В
LI	Be			^ocr	nic [Sma	5 II 🗌		Man		В	C	N	Ο	F	Ne
С	С					-	ctar			nan	-	С	S L	S L	S L	L	S L
la	Mq			ays	l	3	Star	5		nau	e	A	Si	Ρ	S	CI	Ar
L	L													L	S L	L	L
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
L	L	L	\$ L	\$ L	L	L .	\$ L	\$	\$	L	- L -	\$	\$	L	\$	\$	\$
2h	Sr	V	7r	Nh	Mo	Тс	Ru	Rh	Dd	Δα	Cd	In	Sn	Sh	Το		Yo
	51				¢			¢		~ 9		¢	¢ I	50	te te	¢	L C C
₽ С _								.			P				• •	<u></u> Р А 1	
LS	ва	<u>م</u>	HIT	la	VV	ке	US	Ir	Ρτ	Au	Hg		PD	BI	PO	Ατ	Kn
\$	<u> </u>		\$ L	\$ L	\$ <mark>L</mark>	\$	\$	\$	\$	\$	\$ <mark>L</mark>	\$ <mark>L</mark>	\$	\$	\$	\$	\$
Fr	Ra																
\$	\$	Ĩ	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Но	Er	Tm	Yb	Lu
			L	L	\$ L	\$ L	\$ L	\$ L	\$	\$	\$	\$	\$	\$	\$	\$ L	\$
			Ac	Th	Pa		Nn	Du	Δm	Cm	Bk	Cf	Fe	Em	Md	No	Ir
			S S	\$	\$	\$	s s	s s	м	м	M	M	M	м	M	M	M

Spectroscopic Follow-up Results: Chemical Abundances

dSphs harbor many of the **oldest** and most **chemically pristine** stars known → laboratories for nucleosynthetic processes

Each of the 4 DES-discovered dSphs with detailed chemical analysis exhibit **unique abundance patterns**, suggesting that star formation in the early Universe must have been a stochastic process that was highly variable on the scales of ultra-faint dwarf galaxies.

