

Dark Matter Searches using Dwarf Galaxies with HAWC

Tolga Yapıcı

11 August 2017

Located at 97.5° W, 18.9 ° N (Parque Nacional Pico de Orizaba) at 4100m 300x 7.3 m diameter, 5 m height tanks, 3x 8" R5912 PMTs and 1x 10" R7081-HQE PMT in total: 55kT of water (110 B747s, 160M water bottles) - 3900 truck trips covers 22000 m², total length of coaxial cables: ~180km 24kHz trigger rate, 2TB of data per day, 95% livetime

- The event rate: 20 kHz [data rate of ~0.02 GB/s (2 TB/day)]
- Crab Nebula: 400 photons/day, Background: 15000 cosmic rays/second

Lots of background, Efficient Background rejection required

[arXiv:1701.01778]

Dark Matter Detection

thermal freeze-out (early Univ.) indirect detection (now)

production at colliders

Dark Matter Detection

thermal freeze-out (early Univ.) indirect detection (now)

production at colliders

Dark Matter - Indirect Detection

- Particle Physics part by PYTHIA8
- Astrophysics Part (J- and D- factors) by CLUMPY and references

Potential sources to look for dark matter signature

J- and D- factors (1)

Source	RA	Dec	$\log 10[J(\theta)]$	$\log 10[D(\theta)]$	θ_{max}
	(deg)	(deg)	(GeV ² cm ⁻⁵ sr)	(GeV ² cm ⁻² sr)	(deg)
Bootes 1	210.05	14.49	18.47	18.45	0.47
CanesVenatici I	202.04	33.57	17.62	17.55	0.53
CanesVenatici II	194.29	34.32	17.95	17.69	0.13
Coma Berenices	186.74	23.90	19.32	18.71	0.31
Draco	260.05	57.07	19.37	19.15	1.30
Hercules	247.72	12.75	16.93	16.89	0.28
Leo I	152.11	12.29	17.57	18.05	0.45
Leo II	168.34	22.13	18.11	17.36	0.23
Leo IV	173.21	-0.53	16.37	16.48	0.16
Segue 1	151.75	16.06	19.66	18.64	0.35
Sextans	153.28	-1.59	17.96	18.48	1.70
Triangulum II ^[*]	33.33	36.18	20.44	18.42	0.12
Ursa Major I	158.72	51.94	19.67	19.04	0.53
Ursa Major II	132.77	63.11	18.66	17.78	0.43
Ursa Minor	227.24	67.24	19.24	18.13	1.37

From different realizations of profile parameters, mean values were calculated. (from Geringer-Sameth et al., 2015) $(^{[*]}$ from arxiv:1603.08046v2)

NFW profile was used as Dark Matter density profile.

Sources are considered as point sources.

(Fermi-VERITAS-)HAWC Sensitivity

Systematics on the Limits

HAWC Systematics

- Signal passing rate
- Measured number of photo-electrons (PEs) based on simulations
- Simulated PMT charge and the charge from actual data
- Uncertainty associated with the angular resolution

~50% uncertainty [arxiv:1701.01778]

Astrophysical systematics

- outer blue: 1.0° HAWC PSF inner green: 0.2° HAWC PSF
 - J and D factor integration angle: ${\sim}0.5^\circ$ [purple]
- J and D factor Integration angles kept constant, but HAWC PSF changes with energy.
- Physical constraint by DM profile yields one sided uncertainty
- 42% uncertainty for annihilation cross-section limits
- 38% uncertainty for decay lifetime limits

Dark Matter Annihilation (Upper) Limits

Ran the analysis for 507 days of HAWC data for five annihilation channels $(b\bar{b}, t\bar{t}, WW, \tau\tau, \mu\mu)$

Combined results were computed for 14 dSph and 14 dSph+TriangulumII Limits are driven by TriangulumII, Segue1 and Coma B $\tau\tau$ is the strongest limit for HAWC [see arXiv:1706.01277]

Dark Matter Annihilation (Upper) Limits

Gray band: HAWC systematics, Orange band: Astrophysical systematics HAWC dSph limits are better than VERITAS and HESS, than Fermi after ~3 TeV. Magic Segue1 limits \rightarrow negative fluctuation

Dark Matter Annihilation (Upper) Limits

Because of their gamma-ray spectrum, leptonic channel are expected to yield better limits HAWC dSph limits are better after a few TeV M31 limits are comparable and Virgo limits are not good (as expected)

M31 is a good source for searching DM annihilation

Dark Matter Decay (Lower) Limits

Gray band: HAWC systematics, Orange band: Astrophysical systematics Limits are driven by TriangulumII, Segue1 and Coma B (TriangulumII is not so strong, smaller D factor)

Dark Matter Decay (Lower) Limits

HAWC $\tau\tau$ limit is the strongest limit [see arXiv:1706.01277] Virgo is a good source for searching DM decay With the extended source analysis, this will only get better

Some other sources

There is also another class of objects: dlrr galaxies

- 31 dlrr galaxies in HAWC FOV (5 of them can be considered extended)
- Low gamma-ray background
- Low baryon-dark matter ratio

- Results for 15 dSph were shown (analysis as point sources)
- Annihilation: Better limits in $\tau\tau$ and $\mu\mu$ channels for M_{χ} > ~3 TeV than other experiments
- Decay: Better limits in all channels compared to other experiments
- Limits will improve with:
 - including more dSph galaxies
 - more observation time
 - improvements on the analysis techniques and detector