Hunting for WIMPs: how low should we go?

Aaron Pierce Michigan Center for Theoretical Physics

> TevPA 2017 August 10, 2017

with J. Kearney and N. Orlofsky 1611.05048 and N. Shah and S. Vogl 1706.01911

WIMP with a capital W

- Cosmology and direct detection are really controlled by interactions with gauge/ SM Higgs boson
- e.g. Singlet-doublet model, split SUSY...

https://arxiv.org/pdf/1109.2604.pdf

Spin Independent Scattering

Dirac DM coupling to Z ~ 10 $\sigma \approx \text{few} \times 10^{-40}$

Z-mediated Dark Matter

$$\mathcal{L} \supset \frac{c}{2\Lambda^2 c} (iH^{\dagger}D_{\mu}H + \text{h.c.})\bar{\chi}\gamma^{\mu}\gamma^5\chi$$
$$\mathcal{L} \supset \frac{2\Lambda^2 c}{2\Lambda^2} (iH^{\dagger}D_{\mu}H + \text{h.c.})\bar{\chi}\gamma^{\mu}\gamma^5\chi$$

$$\mathcal{L} \supset -\frac{g_2}{4c_W} \frac{cv^2}{\Lambda^2} Z_\mu \bar{\chi} \gamma^\mu \gamma^5 \chi$$
$$-\frac{4c_W}{4c_W} \Lambda^2 \gamma^{-\mu} \chi^{-\mu} \chi^{$$

Also χ - χ -Z-h and χ - χ -Z-h-h contact interactions(!)

Also:

de Simone et al, arXiv:1402.6287;

Arcadi, Mambrini and Richard, arXiv:1411.2985,

Berlin, Escudero, Hooper and Lin, arXiv 1609.09079;

J. Kearney and N. Orlofsky, AP 1611.05048

Contribution to T parameter

 $\mathcal{L} \supset \frac{c}{2\Lambda^2} (iH^{\dagger}D_{\mu}H + \text{h.c.})\bar{\chi}\gamma^{\mu}\gamma^5\chi$

Precision Electroweak Constraints

J. Kearney and N. Orlofsky, AP 1611.05048

Motivates inclusion of new EW states

Scissors credit: J. Kearney

Singlet-Doublet Dark Matter

$$\mathcal{L} \supset -yDHN - y^c D^c \tilde{H}N - M_D DD^c - \frac{M_N}{2}N^2 + \text{h.c.}$$

- Dirac doublet, D/Dc and Majorana N.
- Similar to Higgsino/Bino sector of the MSSM, but without all the pesky symmetry.
- Gives couplings to h and Z
- Ensures approximate unification (cf. split SUSY)

Arkani-Hamed, Dimopoulos, and Kachru hep-th/0501082;

Mahbubani, Senatore [hep-ph/0510064] D'Eramo [arXiv:0705.4493]

Enberg et al. [arXiv:0706.0918] Cohen, Kearney, AP, Tucker-Smith [arXiv: 1109.2604]

Spin-Independent Coupling?

• There is a direct detection "blind spot" Cohen, Kearney, AP, Tucker-Smith [arXiv:1109.2604] Cheung, Hall, Pinner, Ruderman [arXiv:1211.4873]

$$y_{\rm BS}^c = -y \frac{M_N}{M_D} \left(1 \pm \sqrt{1 - \left(\frac{M_N}{M_D}\right)^2} \right)^{-1}$$

Can be found by "low energy theorem"

$$\begin{aligned} \mathcal{L}_{h\chi\chi} &= \frac{1}{2} m_{\chi_i} (v+h) \chi_i \chi_i \\ &= \frac{1}{2} m_{\chi_i} (v) \chi_i \chi_i + \frac{1}{2} \frac{\partial m_{\chi_i} (v)}{\partial v} h \chi_i \chi_i + \mathcal{O}(h^2), \\ &\det \left(M_{\chi} - \mathbb{1} m_{\chi_i} (v) \right) = 0. \end{aligned}$$

 $E \longrightarrow W \rightarrow \nu_1$

 \rightarrow $\,$ No tree-level direct detection analog $\,$

No tree-level direct detection analog

Question:

 Suppose Higgs coupling is small (near the blindspot), can we expect to see the Dark Matter through its spin-dependent scattering?

J. Kearney and N. Orlofsky, AP 1611.05048

Singlet Doublet m_D

In blind spot (fixes y^c)

Relic density thermal (fixes M_D)

Breaking the Crossing Symmetry: Co-annihilation

If χ and Y simultaneously inhabit the thermal bath at freeze-

out

(Boltzman suppression not too large)

$$e^{-\Delta m/T_{FO}} \approx e^{-20\frac{\Delta m}{m}}$$

 $\sigma(\chi\chi \to SM) \ \sigma(\chi Y \to SM) \ \sigma(YY \to SM)$

Griest and Seckel, Phys.Rev. D43 (1991) 3191-3203

Loop Induced Dark Matter Couplings

WIMP Mass $[\text{GeV}/c^2]$

Snowmass 1310.8327

Mass Splitting

Mass Splittings

But...

 It is always possible that there could be "some Higgsino" in the dark matter, in which case, direct detection may have nothing to do with the cosmology.

$$\sigma_{SI} \approx 3 \times 10^{-47} \text{cm}^2 \left(\frac{1 \text{ TeV}}{\mu}\right)^4 \left(\frac{m_{\chi}}{500 \text{ GeV}}\right)^2 \left(1 + \frac{\mu s_{2\beta}}{m_{\chi}}\right)^2 \left(1 - \frac{m_{\chi}^2}{\mu^2}\right)^{-2}$$

Conclusion WIMPs: a Status Report

- Higgs-centric cosmology getting squeezed
- Z-centric cosmology is **exciting now**
 - Symmetry reason for blind spot?
- Co-annihilation-centric cosmology (stop or otherwise) will be very hard for the foreseeable future, but we could get lucky.
- Why co-annihilation? (AP, Kearney, Phys.Rev. D88 (2013) no.9, 095009)

Extra Slides

Cohen, Kearney, AP, Tucker-Smith 1109.2604

Cohen, Kearney, AP, Tucker-Smith 1109.2604

Effective Field Theory Validity

Both gluino mass signs

- Long list of 2-loop (and more!) computations:
 - Carena, Degrassi, Ellis, Espinoza, Haber, Harlander, Heinemeyer, Hempfling, Hoang, Hollik, Hahn,
 Martin, Pilaftsis, Quiros, Ridolfi, Rzehak, Slavich, Wagner, Weiglein, Zhang, Zwirner.

Carena and Haber, hep-ph/0208209

Charge Color-Breaking Vacuua

Morrissey and Blinov 1310.4174

Double Blind spot

- There is a spot where both the SI and SD vanish.
- Requiring these two couplings to vanishes, along with reproducing the thermal abundance, sets MN =MD=850 GeV. (model building?)

Another caveat

 If willing to tune to the Higgs blindspot, there is one more out (not requiring SD): CP Violation

$$\mathcal{C} \to \chi \gamma_5 \chi h \to (\bar{q}q)(\chi \gamma_5 \chi)$$

r= ratio of yukawas

