

The Next Generation Dark Matter Project LUX-ZEPLIN

Matthew Szydagis, on behalf of the LZ Collaboration

(a merger of 2 collaborations, separate from LUX)

UNIVERSITYATALBANY

State University of New York

0

The Ohio State University

TeVPA OSU August 8, 2017

adapted from slides by M.E. Monzani, SLAC

Sanford Underground Research Facility SURF

4,850 feet below Lead, SD: the former site of the Homestake gold mine

LZ, like LUX, will be installed in the Davis Cavern, once home to the Nobel prize-winning Ray Davis solar neutrino experiment

The Onion-Like Layers of the Beast

A Big Liquid Noble Time Projection Chamber

- 10 tons, to find WIMP nuclear recoil (NR) – 7 tons in the active volume (drift E-field)
- 5.6 ton total fiducial mass nominally
 - Thanks to unique *triple* veto system
- Spin-independent WIMP search sensitivity goal of <= 2.3 x 10⁻⁴⁸ cm² interaction cross-section for a mass-energy of 40 GeV
 - Clip the neutrino "shoulder" at low mass
- Turning on by 2020, with 1,000 initial livedays: get within order mag. high-m v floor
- 6 keVnr threshold with at least 99.5% discrimination are baseline assumptions
 - Threshold means energy at which efficiency (sigmoid-like) is 50%
 - Electron recoil (ER) leakage of 0.5% below NR band Gaussian centroid

Discovery Machine

Z

- 61-cm thick Gd-loaded scintillator
- instrumented xenon "skin" layer
- water shield, an active muon veto

in-situ monitoring of residual backgrounds

We will be able to tag both neutrons (muon-induced and other) & gammas

Energy Rol + Single Scatter Rol + SS Cut + All Vetoes

Screening and Simulations: Background Table

Expected counts in 1,000 live days in an indicative 5.6-ton fiducial mass in (1.5-6.5 keV_{ee}) and (6-30 keV_{nr}) energy ranges:

ltem	ER cts	NR cts
Detector Componenents	6.2	0.07
Dispersed radionuclides (Rn, Kr, Ar)	911	-
Laboratory and cosmogenic	4.3	0.06
Fixed surface contamination	0.19	0.37
¹³⁶ Xe $2\nu\beta\beta$	67	-
Neutrinos (v-e, v-A)	255	0.72
Total	1244	1.22
Total (with 99.5% ER discrimination, 50% NR efficiency)	6.22	0.61
Total ER+NR background events	6.83	

- ER vs. NR discrimination is critical to success of experiment
- PLR analysis: very powerful at rejecting residual ER events

High-stat LUX Calibrations + NEST

An Example WIMP Signal Region

Technical Design Report (TDR) arXiv:1703.09144

Simulation of LZ's Full Initial Exposure

Latest Sensitivity Projections: Spin-Independent

Moore's-like Law for WIMP SI Direct Detection

Spin-Dependent Neutron and Proton

Conceptual Design Report (CDR) arXiv:1509.02910

(apologies that slightly outdated: latest PICO SD-p results missing for instance)

Solar Axions, and Galactic ALPs

Note LUX not here because plots predate that work. See LUX talk for recent results

THE SLAC "SYSTEM TEST" PLATFORM

≺LE

Hf

GRID PROTOTYPING AND TESTING

PHASE I TEST DETECTOR

FULL-SCALE GRID LOOM AT SLAC

110

(MY STUDENT, JACK GENOVESI

1 1-

T

LZ = LUX + ZEPLIN

A large collaboration, for the field of dark matter:

- 38 institutions (US, UK, Portugal, Russia, + South Korea)
- >250 laboratory staff scientists, university faculty, postdocs, graduate students, engineers, & technicians

The most recent LZ collaboration meeting, at SURF, July 2017

Summary and Outlook

- LZ achieved CD-3 milestone on 02.09.17
 - March 2016: LUX removed from Davis
 - July 2017 (NOW): surface assembly prep
 - July 2018: underground installation
 - 2020: beginning of LZ commissioning
- Long lead-time procurements are underway
- Quality assurance and testing for hardware underway; material screening program busy
- LZ benefits from excellent LUX calibrations plus understanding of BGs, and from NEST
- LZ science run planned to start in 2021:
 - 1,000 live-days and 5.6T fiducial mass
 - Baseline SI sensitivity of 2.3×10⁻⁴⁸ cm²
 - Start probing the ν floor at <10 GeV/c²

Hypothetical ²²²Rn Scenarios 10⁻⁴⁴ 10⁻⁸ ²²²Rn 10x, 134 mBq Baseline, 13.4 mBq 10⁻⁴⁵ 10⁻⁹ Goal, 0.67 mBq **Powerful background rejection** σ_{SI} [pb] **10**⁻¹⁰ 10 thanks to Profile-Likelihood-Ratio 5 (PLR) analysis 10⁻⁴⁷ **10**⁻¹¹ 10⁻⁴⁸ **10**⁻¹² 10³ 10² 10 m_x [GeV/c²] Sensitivity estimate is robust!

21

WIMP Signal Region in LZ

WIMP Signal Region in LZ

WIMP Signal Region in LZ

Effective background rejection with PLR

- Noble Element Simulation Technique
- Simulates excitation, ionization, and elastic scattering processes
- Simulates electron recombination and escape/drift
- Pulse shapes: S1 triplet and singlet decay times, and photon travel times
- <u>http://nest.physics.ucdavis.edu/site/</u>
 - See website for publications list
- Used by LUX, LZ, XENON100, XENON1T/nT, PandaX