ABRACADABRA: Detecting axion dark matter

Ben Safdi

MIT / University of Michigan

Y. Kahn, **B.S.***, J. Thaler, PRL 2016*

ABRA-10 cm collaboratio[n](#page-0-0)
 \Box

$$
\mathcal{L}_{\text{axion}} = -\frac{a}{f_a} \frac{g^2}{32\pi^2} G_{\mu\nu} \tilde{G}^{\mu\nu}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

$$
\mathcal{L}_{\text{axion}} = -\frac{a}{f_a} \frac{g^2}{32\pi^2} G_{\mu\nu} \tilde{G}^{\mu\nu}
$$

 \triangleright QCD gives a mass:

$$
m_a \approx \frac{f_\pi}{f_a} m_\pi \approx 10^{-9} \text{ eV} \left(\frac{10^{16} \text{ GeV}}{f_a} \right)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

$$
\mathcal{L}_{\text{axion}} = -\frac{a}{f_a} \frac{g^2}{32\pi^2} G_{\mu\nu} \tilde{G}^{\mu\nu}
$$

 \triangleright QCD gives a mass:

$$
m_a \approx \frac{f_\pi}{f_a} m_\pi \approx 10^{-9} \text{ eV} \left(\frac{10^{16} \text{ GeV}}{f_a} \right)
$$

 \blacktriangleright Axion couples to QED

$$
\mathcal{L} = -\frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu} \quad g_{a\gamma\gamma} \propto \frac{\alpha_{\text{EM}}}{f_a}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

$$
\mathcal{L}_{\text{axion}} = -\frac{a}{f_a} \frac{g^2}{32\pi^2} G_{\mu\nu} \tilde{G}^{\mu\nu}
$$

 \triangleright QCD gives a mass:

$$
m_a \approx \frac{f_\pi}{f_a} m_\pi \approx 10^{-9} \text{ eV} \left(\frac{10^{16} \text{ GeV}}{f_a} \right)
$$

 \triangleright Axion couples to QED

$$
\mathcal{L} = -\frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu} \quad g_{a\gamma\gamma} \propto \frac{\alpha_{\text{EM}}}{f_a}
$$

 \triangleright Axion (field) can make up all of dark matter K ロ X x 4 D X X 원 X X 원 X 원 X 2 D X 2 0

(ロトメ部) (文書) (文書) 重 $2Q$

K ロ ト K 個 ト K 差 ト K 差 ト È 299

(ロトイ団) → イ君 → イ君 → 重 299

(ロトイ部) (変) (変) (変) (変) 299

Axion dark matter modifies Maxwell's equations

Recall axions also couple to \overline{QED} :

$$
\mathcal{L} = -\frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu} \quad g_{a\gamma\gamma} \propto \frac{\alpha_{\text{EM}}}{f_a}
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 9 Q Q *

Axion dark matter modifies Maxwell's equations

Recall axions also couple to \overline{QED} :

$$
\mathcal{L} = -\frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu} \quad g_{a\gamma\gamma} \propto \frac{\alpha_{\text{EM}}}{f_a}
$$

 \blacktriangleright Magnetoquasistatic approximation: new electric current that follows B-field lines

$$
\nabla \times \mathbf{B} = g_{a\gamma\gamma} \mathbf{B} \frac{\partial a}{\partial t}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Axion dark matter modifies Maxwell's equations

Recall axions also couple to \overline{QED} :

$$
\mathcal{L} = -\frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu} \quad g_{a\gamma\gamma} \propto \frac{\alpha_{\text{EM}}}{f_a}
$$

 \blacktriangleright Magnetoquasistatic approximation: new electric current that follows B-field lines

$$
\nabla \times \mathbf{B} = g_{a\gamma\gamma} \mathbf{B} \frac{\partial a}{\partial t}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

► Locally:
$$
a(t) \approx a_0 \sin(m_a t)
$$
 and $\frac{1}{2} m_a^2 a_0^2 = \rho_{DM}$
▶ $\mathbf{J}_{eff} = g_{a\gamma\gamma} \sqrt{2 \rho_{DM}} \mathbf{B} \sin(m_a t)$

Axion dark matter generates magnetic flux

Y. Kahn, **B.S.**, J. Thaler, PRL 2016

Two readout strategies

Better at low frequency Better at high frequency

 299

B

ABRA-10 cm (happening now!)

 299

目

ABRA-10 cm (happening now!)

 299

B

ABRA-Gen2

 290

Þ

The MIT prototype: ABRACADABRA-10 cm

- ► ABRACADABRA: A Broadband/Resonant Approach to Cosmic Axion Detection with an Amplifying B-field Ring Apparatus
- ► People (LNS+CTP, PSFC, Princeton, UNC, UMich): Janet Conrad, Joe Formaggio, Sarah Heine, Reyco Henning, Yoni Kahn, Joe Minervini, Jonathan Ouellet, Kerstin Perez, Alexey Radovinsky, **B.S.**, Jesse Thaler, Daniel Winklehner, Lindley Winslow

KORK ERKER ADAM ADA

 \blacktriangleright Funded by the NSF!

ABRACADABRA-10 cm at MIT

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

ABRA-10 cm

ABRA-10 cm

ABRA-10 cm

メロトメ 倒 トメ きょくきょう 重 299

Light bosonic dark matter future

- ► MIT: ABRA-10 cm followed by ABRA-1 m ($B \sim 5$ T)
- \triangleright Axions and light bosonic dark matter well motivated by strong-CP problem and high-scale physics (e.g., compactified string theory)

 \triangleright New ideas to search for ultra-light scalars, dark-photons, etc. (laboratory experiments + astrophysics)

- ► e.g., CASPEr experiment $(f_a \sim 10^{17} 10^{19}$ GeV)
- ► Black Hole superradiance $(f_a \sim 10^{17} 10^{19} \text{ GeV})$

KORK ERKER ADAM ADA

- ► Florida LC circuit ($f_a \sim 10^{15}$ GeV)
- ► ADMX-HF ($f_a \sim 10^{11}$ GeV)
- ► CMB (isocurvature + ΔN_{eff})
- \triangleright DM-radio (dark photons)

Questions?

Kロトメ部トメミトメミト ミニのQC

Axion backup

Axion dark matter generates magnetic flux

K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

 \blacktriangleright Estimate B-field induced through pickup loop $(r = a = h = R)$

Axion dark matter generates magnetic flux

- \blacktriangleright Estimate B-field induced through pickup loop $(r = a = h = R)$
- ► Axion effective current: $I_{\text{eff}} \sim R^2 J_{\text{eff}}$
- $\blacktriangleright\ B \sim \frac{I_{\mathsf{eff}}}{B}$ $\frac{H_{\text{eff}}}{R} \sim R g_{a\gamma\gamma} \sqrt{2 \rho_{\text{DM}}} \mathbf{B_0} \sin(m_a t)$
- ► $f_a = 10^{16}$ GeV, B₀ \sim 5 T, $R \sim 4$ m: $B \sim 10^{-22}$ T (KSVZ)

- Example from MRI application: (Myers et. al. 2007)
	- ► B-field sensitivity: $S_B^{1/2} \approx 6.4 \times 10^{-17}$ T/ $\sqrt{\text{Hz}}$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 → 9 Q @

 \blacktriangleright R \approx 3.3 cm

- Example from MRI application: (Myers et. al. 2007)
	- ► B-field sensitivity: $S_B^{1/2} \approx 6.4 \times 10^{-17}$ T/ $\sqrt{\text{Hz}}$

KORK STRAIN A STRAIN A STRAIN

- \blacktriangleright R \approx 3.3 cm
- ► Scale to $R \approx 4$ m
	- ► $S_B^{1/2} \approx 5 \times 10^{-20} \text{ T}/\sqrt{\text{Hz}}$

- Example from MRI application: (Myers et. al. 2007)
	- ► B-field sensitivity: $S_B^{1/2} \approx 6.4 \times 10^{-17}$ T/ $\sqrt{\text{Hz}}$
	- \blacktriangleright R \approx 3.3 cm
- ► Scale to $R \approx 4$ m
	- ► $S_B^{1/2} \approx 5 \times 10^{-20} \text{ T}/\sqrt{\text{Hz}}$
- \blacktriangleright $t = 1$ year interrogation time for GUT scale axion
	- ► Coherence time: $\tau \sim 2\pi/(m_a v^2) \sim 10 \text{ s } (v \sim 10^{-3})$

- Example from MRI application: (Myers et. al. 2007)
	- ► B-field sensitivity: $S_B^{1/2} \approx 6.4 \times 10^{-17}$ T/ $\sqrt{\text{Hz}}$
	- \blacktriangleright R \approx 3.3 cm
- ► Scale to $R \approx 4$ m
	- ► $S_B^{1/2} \approx 5 \times 10^{-20} \text{ T}/\sqrt{\text{Hz}}$
- \blacktriangleright $t = 1$ year interrogation time for GUT scale axion
	- ► Coherence time: $\tau \sim 2\pi/(m_a v^2) \sim 10$ s $(v \sim 10^{-3})$

 2990

 $S/N = 1$ for $B = S_B^{1/2} (t\tau)^{-1/4} \sim 10^{-22}$ T

ABRA-10 cm: vertical cut

イロト イ部 トイ君 トイ君 トー È 290

ABRA-10 cm: pickup cylinder

- $B(t) = B_0 \sin[\omega_0 t + \phi(t)] + B_n(t)$
- $\blacktriangleright \phi(t)$: evolves over coherence time τ

KO KKO K S A B K S B K V S A V K S

$$
\blacktriangleright B(t) = B_0 \sin[\omega_0 t + \phi(t)] + B_n(t)
$$

 $\blacktriangleright \phi(t)$: evolves over coherence time τ

$$
P(\omega) \equiv \frac{1}{\sqrt{T}} \int_0^T dt B(t) \sin(\omega t) = P_0(\omega) + P_n(\omega)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | 19 Q Q

- $B(t) = B_0 \sin[\omega_0 t + \phi(t)] + B_n(t)$
- $\blacktriangleright \phi(t)$: evolves over coherence time τ

$$
P(\omega) \equiv \frac{1}{\sqrt{T}} \int_0^T dt B(t) \sin(\omega t) = P_0(\omega) + P_n(\omega)
$$

KORK ERKER ADAM ADA

► Spectral density: $\lim_{T\to\infty} |P_n(\omega)|^2 \to S_B^{1/2}$ $\frac{1/2}{B}(\omega)$ [T $/\sqrt{Hz}$]

- $B(t) = B_0 \sin[\omega_0 t + \phi(t)] + B_n(t)$
- $\blacktriangleright \phi(t)$: evolves over coherence time τ

$$
P(\omega) \equiv \frac{1}{\sqrt{T}} \int_0^T dt B(t) \sin(\omega t) = P_0(\omega) + P_n(\omega)
$$

KORKARA KERKER DAGA

- ► Spectral density: $\lim_{T\to\infty} |P_n(\omega)|^2 \to S_B^{1/2}$ $\frac{1/2}{B}(\omega)$ [T $/\sqrt{Hz}$]
- \blacktriangleright $T < \tau$
	- \blacktriangleright $|P_0(\omega_0)|^2 \propto B^2 T \to B^2 = S_B^{1/2}(\omega_0)/T$

- $B(t) = B_0 \sin[\omega_0 t + \phi(t)] + B_n(t)$
- $\blacktriangleright \phi(t)$: evolves over coherence time τ

$$
P(\omega) \equiv \frac{1}{\sqrt{T}} \int_0^T dt B(t) \sin(\omega t) = P_0(\omega) + P_n(\omega)
$$

KORKARA KERKER DAGA

- ► Spectral density: $\lim_{T\to\infty} |P_n(\omega)|^2 \to S_B^{1/2}$ $\frac{1/2}{B}(\omega)$ [T $/\sqrt{Hz}$]
- \blacktriangleright $T < \tau$

$$
\blacktriangleright |P_0(\omega_0)|^2 \propto B^2 T \to B^2 = S_B^{1/2}(\omega_0)/T
$$

 \blacktriangleright $T > \tau$

$$
\triangleright |P_0(\omega_0)|^2 \propto \frac{B^2}{T} \times T\tau = B^2\tau
$$

- $B(t) = B_0 \sin[\omega_0 t + \phi(t)] + B_n(t)$
- $\blacktriangleright \phi(t)$: evolves over coherence time τ

$$
P(\omega) \equiv \frac{1}{\sqrt{T}} \int_0^T dt B(t) \sin(\omega t) = P_0(\omega) + P_n(\omega)
$$

- ► Spectral density: $\lim_{T\to\infty} |P_n(\omega)|^2 \to S_B^{1/2}$ $\frac{1/2}{B}(\omega)$ [T $/\sqrt{Hz}$]
- \blacktriangleright $T < \tau$

$$
\blacktriangleright |P_0(\omega_0)|^2 \propto B^2 T \to B^2 = S_B^{1/2}(\omega_0)/T
$$

 \blacktriangleright $T > \tau$

$$
\triangleright |P_0(\omega_0)|^2 \propto \frac{B^2}{T} \times T\tau = B^2\tau
$$

 \blacktriangleright But, line-width is broad and can resolve $N=T/\tau$ different frequencies

- $B(t) = B_0 \sin[\omega_0 t + \phi(t)] + B_n(t)$
- $\blacktriangleright \phi(t)$: evolves over coherence time τ

$$
P(\omega) \equiv \frac{1}{\sqrt{T}} \int_0^T dt B(t) \sin(\omega t) = P_0(\omega) + P_n(\omega)
$$

- ► Spectral density: $\lim_{T\to\infty} |P_n(\omega)|^2 \to S_B^{1/2}$ $\frac{1/2}{B}(\omega)$ [T $/\sqrt{Hz}$]
- \blacktriangleright $T < \tau$

$$
\blacktriangleright |P_0(\omega_0)|^2 \propto B^2 T \to B^2 = S_B^{1/2}(\omega_0)/T
$$

- \blacktriangleright $T > \tau$
	- \blacktriangleright $|P_0(\omega_0)|^2 \propto \frac{B^2}{T}$ $\frac{D}{T} \times T\tau = B^2\tau$
	- But, line-width is broad and can resolve $N = T/\tau$ different frequencies

KORK ERKER ADAM ADA

 $B^2 = S_B^{1/2}(\omega_0)/\tau/\sqrt{N} = S_B^{1/2}(\omega_0)/\sqrt{T\tau}$

Complementary proposals for axion dark matter experiments

KOD KOD KED KED E VOOR

CASPEr: oscillating neutron EDM

_{comp}

(Budker, Graham, Led[b](#page-43-0)etter, Rajendran, and Sushk[o](#page-43-0)v '13) sensitivity using ³He. The dashed lines show the limit from magnetization noise for each sample. the sample for phase 2. The ADMX region shows what region of the $\mathcal{S}_\mathcal{A}$ axion has been covered (darker blue) $[34]$

How can we probe axion dark matter?

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \blacktriangleright Calculation: $d_n \sim 10^{-15}$ e \cdot cm

► Data: $|d_n| < 3 \times 10^{-26}$ e \cdot cm

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Axion a removes d_n :

$$
\mathcal{L}_{\text{axion}} = -\frac{a}{f_a} \frac{g^2}{32\pi^2} G_{\mu\nu} \tilde{G}^{\mu\nu}
$$

 \blacktriangleright Calculation: $d_n \sim 10^{-15}$ e \cdot cm

► Data: $|d_n| < 3 \times 10^{-26}$ e \cdot cm

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 9 Q @

Axion a removes d_n :

$$
\mathcal{L}_{\text{axion}} = -\frac{a}{f_a} \frac{g^2}{32\pi^2} G_{\mu\nu} \tilde{G}^{\mu\nu}
$$

 \triangleright QCD gives a mass:

$$
m_a \approx \frac{f_\pi}{f_a} m_\pi \approx 10^{-9} \text{ eV} \left(\frac{10^{16} \text{ GeV}}{f_a} \right)
$$

 \blacktriangleright Calculation: $d_n \sim 10^{-15}$ e \cdot cm

► Data: $|d_n| < 3 \times 10^{-26}$ e · cm

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

Axion a removes d_n :

$$
\mathcal{L}_{\text{axion}} = -\frac{a}{f_a} \frac{g^2}{32\pi^2} G_{\mu\nu} \tilde{G}^{\mu\nu}
$$

 \triangleright QCD gives a mass:

$$
m_a \approx \frac{f_\pi}{f_a} m_\pi \approx 10^{-9} \text{ eV} \left(\frac{10^{16} \text{ GeV}}{f_a} \right)
$$

► *a* as DM: $a(t) \sim \sqrt{\rho_{DM}} \cos(m_a t)$