

High-Energy Emission from Astronomical Transients Raffaella Margutti

"We always find something, eh Didi, to give us the impression we exist?"

Galaxy Feedback

Deposition of Radiative+ Mechanical Energy

Explosive Transienes

High-Energy emission from Transients

Tidal Disruption Events

Engine-Driven SNe / GRBs

SuperLuminous SNe

Strongly Interacting SNe

Credit: NASA

ILLUSTRATION

Engine-driven SNe/GRBs

IceCube, Nature 2 12

C40+59 stacking

b

High-Energy emission from Transients

Tidal Disruption Events

SuperLuminous SNe

Engine-Driven SNe / GRBs

Strongly Interacting SNe

Context Matters

Energy partitioning

Margutti +13, +14; Kamble +13; Soderberg +06, +10

The restless Snizoogip

....Once upon a time SNe exploded once....

UV-Optical-NIR Light-curve

Margutti+ 2014

Supergiant

Luminous Blue Variable (Eruptions)

SN Explosion

Wolf-Rayet ~10⁴⁻10⁵ yrs

Time

A new channel of Explosive Mass Loss in evolved massive stars

Luminous Blue Variable (Eruptions)

SN2009ip

A supernova symphony unraveled?

Supergiant

Wolf-Rayet ~10⁴⁻10⁵ yrs

SN Explosion

Supernova shock front slams into earlier material

MASS LOSS- Massive Stars

Broad-band SED of SN2009ip at peak

See Murase+ 2011

SN shock strong interaction w. medium

Muon Neutrinos

Massive star: M> 60 Msun

Smith et al, 2010; Foley et al., 2011

1999

- N

Progenitor of SN 2009ip

E"

Developing STRONG interaction...

...in real-time...

Direct Flash Observations Spectroscopy

Flash Shock Interaction ctroscopy

15-20 days

Time

Direct Observations

Flash Spectroscopy

Type IIP iPTF13dqy

Shock Interaction

Yaron+2017

Direct Observations Spec

Supergiant

FlashShock InteractionSpectroscopy

Wolf-Rayet ~10⁴⁻10⁵ yrs **SN** Explosion

Direct Observations Spec

Radio X-rays Radio X-rays Radio X-rays Radio

X-rays

FlashShock InteractionSpectroscopy

Direct Observations Sp

FlashShock InteractionSpectroscopy

Massive Stars MASS LOSS

Type I H-poor

Margutti+ 2017, ApJ, 835, 140 Tinyanont et al., 2016 Anderson et al., 2016 Milisavlejvic, RM et al., 2015, ApJ, 815, 120

SN2014C

Type II H-rich

SN2014C: a normal Ib SN

Bolometric Luminosity

SN2014C-Optical

Development of H-features with time

SN2014C-Radio

Radio Luminosity INCREASES w. time!

/I+16

RN

SN2014C-X-rays (soft+hard)

RM+16

Exploding Star challenges decades-long understanding of how massive stars evolve and die

Optical

Supernova **2014C**

Credit: NASA/CXC/CIERA/R.Margutti et al pre-explosion

X-rays

H-poor medium

High-density H-rich medium

Chandra+NuSTAR

Direct Constraints on the shock dynamics!

R~ 5 10¹⁶ cm

H-poor medium

High-density H-rich medium

~ 1 M_O

Wolf-Rayet ~10⁴⁻10⁵ yrs

Hydrogen

SN Explosion

Wolf-Rayet ~10⁴⁻10⁵ yrs

Hydrogen

SN Explosion

Wolf-Rayet

rs

Supergiant

1000 yrs

SN Explosion

Nuclear Burning Instabilities

Non thermal Radio emission Ibc

circumstellar material shells

Ordinary

80

$E_{rad} = 10^{51} \text{ erg}$ $E_{K} = 10^{52} \text{ erg}$

What powers SLSNe?

Gal-Yam 2009

56

Interaction

E.g. Chevalier 2011 Pan & Loeb 2013

Increased Efficiency

Magnetar Kasen & Bildsten 2010 Woosley 2010

Interaction .g. Chevalier 2011 Pan & Loeb 2013

What powers SLSNe?

Gal-Yam 2009

Magnetar Kasen & Bildsten 2010 Woosley 2010

TIME

"The problem is completely specified by the properties of the pulsar and of the ejecta" Metzger 2013

Strongly Interacting SN shocks at VHE:

(1) Environment(2) CR efficiency ofacceleration

VERITAS Observing Proposal 2015/2016

Proposal Title : A new window of investigation on strongly interacting SN shocks:
VERITAS observations of SN2014C
Science Group : DM-Aspen
Authors : M. Cerruti, W. Benbow (Harvard), R. Margutti (NYU), K. Murase (Penn State U),
N. Omodei (Stanford U.), T. Cheung (Naval Research Lab.), D. Milisavljevic (SAO), A. Kamble,
J. Parrent, A. Zauderer, (Harvard), R. Chornock (Ohio U), W. Fong (Arizona U)

"." The END

is where we start from ... "

The Little Gidding by T.S. Eliot

Thanks to Chandra, XMM, Swift, NuSTAR, VLA, VLBI, CARMA, SMA, GMRT for their generous support to our investigation