

# Universal Filter Tunable Frontend

### **Oindree Banerjee**

for the ANITA collaboration August 11, 2017 TeVPA 2017 Columbus, Ohio

NSF CAREER Award 1255557



ANITA-4 Grant NNX15AC20G



#### **ANITA Collaboration**

#### Dynamic tunable notch filters for the Antarctic Impulsive Transient Antenna (ANITA)

P. Allison<sup>a</sup>, O. Banerjee<sup>a,\*</sup>, J. J. Beatty<sup>a</sup>, A. Connolly<sup>a</sup>, C. Deaconu<sup>g</sup>, J. Gordon<sup>a</sup>, P. W. Gorham<sup>h</sup>, M. Kovacevich<sup>a</sup>, C. Miki<sup>h</sup>, E. Oberla<sup>g</sup>, J. Roberts<sup>h</sup>, B. Rotter<sup>h</sup>, S. Stafford<sup>a</sup>, K. Tatem<sup>h</sup>, L. Batten<sup>b</sup>, K. Belov<sup>c</sup>, D. Z. Besson<sup>d,1</sup>, W. R. Binns<sup>e</sup>, V. Bugaev<sup>e</sup>, P. Cao<sup>f</sup>, C. Chen<sup>i</sup>, P. Chen<sup>i</sup>, Y. Chen<sup>i</sup>, J. M. Clem<sup>f</sup>, L. Cremonesi<sup>b</sup>, B. Dailey<sup>a</sup>, P. F. Dowkontt<sup>j</sup>, S.Hsu<sup>i</sup> J. Huang<sup>i</sup>, R. Hupe<sup>a</sup>, M. H. Israel<sup>e</sup>, J. Kowalski<sup>h</sup>, J. Lam<sup>j</sup>, J. G. Learned<sup>h</sup>, K. M. Liewer<sup>c</sup>, T. C. Liu<sup>i</sup>, A. Ludwig<sup>g</sup>, S. Matsuno<sup>h</sup>, K. Mulrey<sup>f</sup>, J. Nam<sup>i</sup>, R. J. Nichol<sup>b</sup>, A. Novikov<sup>d,1</sup>, S. Prohira<sup>d</sup>, B. F. Rauch<sup>e</sup>, J. Ripa<sup>i</sup>, A. Romero-Wolf<sup>c</sup>, J. Russell<sup>h</sup>, D. Saltzberg<sup>j</sup>, D. Seckel<sup>f</sup>, J. Shiao<sup>i</sup> J. Stockham<sup>d</sup>, M. Stockham<sup>d</sup>, B. Strutt<sup>j</sup>, G. S. Varner<sup>h</sup>, A. G. Vieregg<sup>g</sup>, S. Wang<sup>i</sup>, S. A. Wissel<sup>n</sup>, F. Wu<sup>j</sup>, R. Young<sup>d</sup> <sup>a</sup>Dept. of Physics, The Ohio State Univ., Columbus, OH 43210; Center for Cosmology and AstroParticle Physics. <sup>b</sup>Dept. of Physics and Astronomy, University College London, London, United Kingdom. <sup>c</sup>Jet Propulsion Laboratory, Pasadena, CA 91109. <sup>d</sup>Dept. of Physics and Astronomy, Univ. of Kansas, Lawrence, KS 66045. <sup>e</sup>Dept. of Physics, Washington Univ. in St. Louis, MO 63130. <sup>f</sup>Dept. of Physics, Univ. of Delaware, Newark, DE 19716. <sup>9</sup>Dept. of Physics, Enrico Fermi Institute, Kavli Institute for Cosmological Physics, Univ. of Chicago, Chicago IL 60637. <sup>h</sup>Dept. of Physics and Astronomy, Univ. of Hawaii, Manoa, HI 96822. Dept. of Physics, Grad. Inst. of Astrophys., Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei, Taiwan. <sup>3</sup>Dept. of Physics and Astronomy, Univ. of California, Los Angeles, Los Angeles, CA 90095.<sup>k</sup>Dept. of Physics, Univ. of California, Irvine, CA 92697. <sup>1</sup>National Research Nuclear University, Moscow Engineering Physics Institute, 31 Kashirskoye Highway, Russia 115409 <sup>m</sup>SLAC National Accelerator Laboratory, Menlo Park, CA, 94025. <sup>n</sup>Dept. of Physics, California Polytechnic State Univ., San Luis Obispo, CA 93407.

\*Corresponding author Email address: oindreeb@gmail.com (O. Banerjee)

#### Submitting soon to NIM A





#### Gamma Ray Burst: My favorite motivation

### Broad motivation:

- Particle Physics at E > 14 TeV (Large Hadron Collider)
- Astrophysics at Nature's most powerful, remote accelerators

 $\begin{array}{c} p + \gamma \rightarrow \Delta^{+} \left( 1232 \ \text{MeV/c}^{2} \right) \rightarrow n + \pi^{+} \ \text{OR} \ p + \pi^{0} \\ \\ \pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \rightarrow e^{+} + \underbrace{\nu_{e} + \overline{\nu}_{\mu} + \nu_{\mu}}_{\text{potential}} \\ \\ \mu^{0} \rightarrow \gamma \gamma \quad n \rightarrow p \ e^{-} \overline{\nu}_{e} \end{array} \begin{array}{c} \text{potential} \\ \text{ultra-high-energy} \\ (\text{UHE}) \\ neutrinos \end{array}$ 

PC: NASA E/PO, Sonoma State University, Aurore Simonnet





# ANtarctic Impulsive Transient Antenna

- NASA long-duration balloon experiment
- Ultra-high-energy (>10<sup>18</sup> eV) neutrino detector
- Looking for radio Cherenkov signal
- Four flights so far
- Recent flight 27.3 days long





#### ANITA-IV Flight 2016 Dec 2 - 29





#### **ANITA Collaboration**

### Military satellite noise during ANITA-3









**Oindree Banerjee** 



### **ANITA Collaboration**

## **ANITA-4** Trigger

### Trigger Logic:

- Level 1 : LCP and RCP signal from same antenna above threshold
- Level 2 : > 1 antennas in same phi sector have Level 1 trigger
- Level 3 : Adjacent phi sectors have Level 2 trigger







## ANITA DATA

- An "event" is a 100 nanosecond snapshot of an incoming plane wave (voltage vs. time) that satisfies our trigger

- ANITA-1 (06 07) 8 million events
- ANITA-2 (08 09) 26 million events
- ANITA-3 (14 15) 77 million events
- ANITA-4 (2016) 97 million events
- Most events are noise
  - Thermal radiation by the ice
  - Anthropogenic or Human-made noise
    - Military satellites





### **ANITA Collaboration**

## **TUFF** board

#### Single TUFF channel





#### Circuit diagram

#### Oindree Banerjee



#### **ANITA Collaboration**

## **TUFF** response







## TUFF notch operations during ANITA-4

Realtime notch tuning







## Turning Notch 2 off... ouch



```
13/17
```





### ANITA Collaboration







### **ANITA Collaboration**

# Phi-masking









### **ANITA Collaboration**







## Conclusions

- New tunable dynamic notch filters were successfully operated during ANITA-4
- Helped to increase per day "instrument livetime" by 2.8x
- With satellite noise under control, we can focus on improving other parts of signal processing
  - ANITA-5 trigger: continuous, low-resolution digitization to perform interferometry in realtime
- ANITA-4 flight is promising and data analysis is underway
  - Planned analysis includes
    - Diffuse search for UHE neutrinos
    - Search for UHE neutrinos from Gamma Ray Bursts
    - Evaluating sensitivity to Fast Radio Bursts





Backup slides

**Oindree Banerjee** 



Antarctic ice sheet is lots of ice and it is radio transparent!

NSE

### **ANITA Collaboration**

Threshold

Changing thresholds during the flight is a secondary method of reducing digitization deadtime



**Oindree Banerjee**