Complexities of a Mid-Life Crush:

Collaborators:

J. Blondin C. Kolb T. Temim and many others...

A Study of the Pulsar Wind Nebula Vela X

Patrick Slane

Composite SNRs: Shock Structure

See, also, Kolb et al. 2017

Patrick Slane

G327.1-1.1: SNR RS Interaction

Bubble (X-ray)

Radio PWN

> Neutron Star

SNR Shell

8 arcmin

Temim et al. 2009

- Radio morphology suggests PWN interaction with SNR reverse shock.
- Chandra observations show offset compact source w/ trail of nonthermal emission extending to radio PWN.
 - Compact source shows <u>extent</u> and is <u>embedded</u> in bow shock structure

Patrick Slane

G327.1-1.1: SNR RS Interaction

Compact Source

Prongs

 Chandra observations show offset compact source w/ trail of nonthermal emission extending to radio PWN.

- Compact source shows <u>extent</u> and is <u>embedded</u> in bow shock structure _{TeVPA 2017}

Patrick Slane

Bubble (X-ray)

Morphology Comparison

Trail thickness → pulsar's spindown luminosity

ISM density gradient

Pulsar velocity

Displacement of "relic" PWN \rightarrow orientation of density gradient

Orientation of trail \rightarrow combination of gradient and pulsar motion direction Temim et al. 2015

Broadband Spectrum at 17,000 yrs

• Semi-analytic model for radiative evolution of the PWN (Gelfand et al. 2009)

Input parameters from observational constraints and HD model

 \rightarrow B = 11 µG and an electron energy break at 300 GeV

Age of Injected Particles at 17,000 yrs

Temim et al. 2015

 $\tau_{syn} \approx 820 \, E_{e,100}^{-1} B_{10}^{-2} \, \mathrm{yr}$

: Expect spectral steepening $\Delta\Gamma = 0.5$ over a synchrotron lifetime Photon index in the trail steepens from 1.76 to 2.28:

Patrick Slane

Vela SNR

Vela X

Parkes

- Nearby SNR evolving in density gradient
- Middle-aged pulsar with disrupted PWN (Vela X)

- Nearby SNR evolving in density gradient
- Middle-aged pulsar with disrupted PWN (Vela X)
- "Cocoon"-like structure extending southward from pulsar (Markwardt & Ögelman 1995)

- Nearby SNR evolving in density gradient
- Middle-aged pulsar with disrupted PWN (Vela X)
- "Cocoon"-like structure extending southward from pulsar (Markwardt & Ögelman 1995)

- Radio/X-ray/γ-ray emission suggests complex particle spectrum
- Possible breaks or particle escape

Patrick Slane

- Nearby SNR evolving in density gradient
- Middle-aged pulsar with disrupted PWN (Vela X)
- "Cocoon"-like structure extending southward from pulsar (Markwardt & Ögelman 1995)

- Radio/X-ray/γ-ray emission suggests complex particle spectrum
- Possible breaks or particle escape
 - Possibly more rapid diffusion from radio nebula than from cocoon

- XMM observations reveal filamentary structure along cocoon
 - both nonthermal emission and thermal emission from ejecta observed

- XMM observations reveal filamentary structure along cocoon
 - both nonthermal emission and thermal emission from ejecta observed
- TeV and GeV γ-rays seen from Vela X
 emission centroids appear offset

kТ

0.31

0.28

0.25

0.22

- XMM observations reveal filamentary structure along cocoon
 - both nonthermal emission and thermal emission from ejecta observed
- TeV and GeV γ-rays seen from Vela X
 emission centroids appear offset

 Spectra show ejecta component within Vela X has higher kT along cocoon

- XMM observations reveal filamentary structure along cocoon
 - both nonthermal emission and thermal emission from ejecta observed
- TeV and GeV γ-rays seen from Vela X
 emission centroids appear offset

- Spectra show ejecta component within Vela X has higher kT along cocoon
 - distribution of O VII and O VIII is consistent with this picture

Bkd

Shell

- both nonthermal emission and thermal emission from ejecta observed
- TeV and GeV γ-rays seen from Vela X
 emission centroids appear offset

- Spectra show ejecta component within Vela X has higher kT along cocoon
 - distribution of O VII and O VIII is consistent with this picture

O VIII

Bkd

XMM observations reveal filamentary structure along cocoon

Shell

- both nonthermal emission and thermal emission from ejecta observed
- TeV and GeV γ-rays seen from Vela X
 emission centroids appear offset

- Spectra show ejecta component within
 Vela X has higher kT along cocoon
 - distribution of O VII and O VIII is consistent with this picture
- Power law index steepens with distance from pulsar, though slowly along cocoon
 emission at Fermi peak somewhat harder

Crushing Vela X

Progression of FS/RS

- Solutions by Truelove & McKee (1999) show evolution of FS/RS radius for different values of explosion energy, ambient density, and ejecta mass/profile.
- Explore parameter space to arrive at scenario for Vela SNR

 $n_{0,SW} = 0.05 \text{ cm}^{-3}$ $n_{0,NE} = 0.15 \text{ cm}^{-3}$

Note: actually, evidence of engulfed clouds suggests a higher mean density.

Hydrodynamical Simulations

- Evolution of SNR into density gradient with contrast of ~4 results in asymmetric crushing similar to that observed in Vela X.
 - As RS sweeps over pulsar, a channel of ejecta-rich material is formed, similar in structure to cocoon.
 - Rapid advection may explain hard spectrum in cocoon.

Crushing Vela X

- "Cocoon" created by RS interaction
 - RS sweeps ejecta into PWN, creating channel of mixed gas

Patrick Slane

TeVPA 2017

fast diffision may be required

emission in progress

3D modeling and study of broadband

 $n_0^N = 1 \text{ cm}^{-3}$

- Hydro simulations reproduce overall structure
- "Cocoon" created by RS interaction
 - RS sweeps ejecta into PWN, creating channel of mixed gas

- PWN gas still fills much of nebula, but ejecta mixing occurs throughout
 - consistent w/ observations, though fast diffision may be required
- 3D modeling and study of broadband emission in progress

Patrick Slane

Crushing Vela X

 $n_0^{N} = 1 \text{ cm}^{-3}$

- Hydro simulations reproduce overall structure
- "Cocoon" created by RS interaction
 - RS sweeps ejecta into PWN, creating channel of mixed gas
 - lower ρ in cocoon \Rightarrow higher kT

- PWN gas still fills much of nebula, but ejecta mixing occurs throughout
 - consistent w/ observations, though fast diffision may be required
- 3D modeling and study of broadband emission in progress

Patrick Slane

Crushing Vela X

Summary

- Multiwavelength studies of PWNe reveal unique information on the conversion of spin-down power into relativistic outflows, providing views of shocks and interactions with supernova ejecta.
 - Hydrodynamical simulations, constrained by observations, provide important tool for unfolding the evolution and properties of PWNe within SNRs.
- Vela SNR shows distinct signatures of evolution into a non-uniform CSM, resulting in disruption of its PWN by an asymmetric reverse shock.
- X-ray studies of Vela X reveal ejecta mixed into disrupted PWN.
 - Hard nonthermal X-rays observed along cocoon, and also near GeV peak.
 - Enhanced ejecta observed along cocoon.
 - HD modeling suggests cocoon may result from instabilities dragging ejecta into disrupted PWN.
 - Higher advection speed may reduce synchrotron losses in cocoon region.
- Ongoing efforts include 3D simulations with post-processed emission characteristics, applied to these and other evolving systems.

Patrick Slane

Crushing Vela X

Inferring Pulsar Kicks

Patrick Slane

Crushing Vela X

TeVPA 2017

(c)

(f)

Morphology Comparison

