

# Status of IceCube-Gen2

Tianlu Yuan for the IceCube-Gen2 collaboration

TeVPA, 11 Aug 2017

Columbus, OH, USA





# Science goals for IceCube-Gen2

- Discover sources of astrophysical neutrinos
- Identify sources of high energy cosmic rays
- More precise measurements of neutrino properties
- Astrophysical tau-neutrino discovery
- Set limits or discover GZK neutrinos
- BSM physics

# Extending IceCube



#### Envisioned IceCube-Gen2 Facility



## Envisioned IceCube-Gen2 Facility



## IceCube-Gen2 Phase 1: The next step

Proposal to add 7 additional strings

Instrument with multi-PMT digital optical modules (mDOMs)

- Better directionality
- Doubles photocathode area

Inline with physics goals of the Precision IceCube Next Generation Upgrade (PINGU)

![](_page_5_Figure_6.jpeg)

#### IceCube-Gen2 Phase 1: Oscillation sensitivity

![](_page_6_Figure_1.jpeg)

![](_page_7_Figure_0.jpeg)

#### IceCube-Gen2 Phase 1: Oscillation sensitivity

#### NOvA best-fit assumed

![](_page_8_Figure_2.jpeg)

![](_page_9_Figure_0.jpeg)

# Ongoing hardware R&D

![](_page_10_Picture_1.jpeg)

## Improved calibration system

Precision Optical CAlibration Module (POCAM) in-situ calibration devices  $\rightarrow$  Improve knowledge of ice properties

Prototype deployed within Gigaton Volume Detector in Lake Baikal

Isotropic light source

![](_page_11_Figure_4.jpeg)

# Looking forwards: A surface veto for IceCube-Gen2

Main background in southern sky are atmospheric muons from cosmic rays

Surface veto can help tag them

```
Envisioned area of 75 km<sup>2</sup> –
compare to IceCube's 1km<sup>2</sup> surface
veto IceTop
```

Around 800 stations, covering the entire detector up to zenith of 45°

Prototype stations under construction

![](_page_12_Picture_6.jpeg)

#### Point source sensitivity

![](_page_13_Figure_1.jpeg)

# Diffuse sensitivity

![](_page_14_Figure_1.jpeg)

# Cutoff sensitivity, 3 PeV cutoff, $\gamma$ =2.17

Method: inject astro+GZK neutrino flux and unfold expectations Error bars show 68% range of allowed fluxes

![](_page_15_Figure_2.jpeg)

## Cutoff sensitivity, 30 PeV cutoff, $\gamma$ =2.17

Method: inject astro+GZK neutrino flux and unfold expectations Error bars show 68% range of allowed fluxes

![](_page_16_Figure_2.jpeg)

#### Complementary radio array: ARA

Detection of GZK neutrinos produced off CMB requires sensitivity above 100 PeV

ARA = Askaryan Radio Array

Detect radio waves produced via Askaryan effect on ice

#### Most optimistic GZK flux scenario

- ARA-37: 2.8 evts/yr
- IceCube-Gen2: 0.5 evts/yr

![](_page_17_Figure_7.jpeg)

#### Summary

The future of in-ice neutrino telescopes is IceCube-Gen2 Envisioned components include PINGU, large surface array, and complementary radio array

#### IceCube-Gen2 Phase 1 is the next step

Proposed 7 string expansion with densely-spaced mDOMs Aligns with PINGU science goals  $\rightarrow$  Improved oscillation sensitivity

Ongoing hardware development to improve DOM design and surface veto detectors

A lot more left to do and to discover!

# Backups

#### Sensitivity improvements from new DOM designs

![](_page_20_Figure_1.jpeg)

#### Flavor ratio improvement

![](_page_21_Figure_1.jpeg)

Shoemaker et al. Phys.Rev. D93 (2016) no.8, 085004