RADIO AND GAMMA-RAY CONSTRAINTS ALONG THE MINOR AXIS OF STARBURST M82

THE OHIO STATE UNIVERSITY

Benjamin J. Buckman Tim Linden Todd A. Thompson buckman.12@osu.edu

GOOGLE

Benjamin J. Buckman (OSU, CCAPP) [TeVPA2017]

WHY M82?

- One of the few galaxies with significant detection in gamma-rays
- Well studied
 - Gamma-ray observations Fermi-LAT & VERITAS
 - Radio halo observations
- Edge-on View
- Exemplar of galactic winds
 - Cosmic-ray driven?

DISTRIBUTIONS

- Magnetic Field Constant in core + power law
- Gas Density Constant in core + power law + wind
- ISRF MW with scaling
- Sources Constant distribution in core
- Source Spectra $\propto E^{-2.2}$

WHAT WE WANT TO CONSTRAIN

- Magnetic Field and Gas Densities B_0 , n_0 + power laws
- Wind
- Diffusion Coefficient
- Free-free emission + absorption

Create images of M82 in gamma-rays and radio

RESULTS I

 $[B_0 (\mu G), n_0 (cm^{-3})] \triangleright A - [200, 200] B - [400, 800] C - [800, 2000]$

Benjamin J. Buckman (OSU, CCAPP) [TeVPA2017]

RESULTS II

9

Finding possible B₀ and n₀ From overall normalization of integrated radio and gamma-ray spectra

- Possible Solutions
 - Decrease D_{xx}
 - More free-free emission & absorption

RESULTS III

 $[B_0 (\mu G), n_0 (cm^{-3})] \triangleright A - [200, 200] B - [400, 800] C - [800, 2000]$

RESULTS IV

- Hardest points to fit are [0.5,1.0] kpc
- Hard to get 92cm and 22cm without overproducing 6cm and 3cm

RESULTS V

$$\left(\frac{E}{1 \; GeV}\right) = \left(\frac{\nu_{crit}}{1 \; GHz}\right)^{\frac{1}{2}} \left(\frac{B}{100 \; \mu G}\right)^{-\frac{1}{2}}$$

Possible solution – synchrotron or IC cooling

steepen spectrum

RESULTS VI

RESULTS VI

 Allowing the gas density to decrease much faster than magnetic field gives better fits

SUMMARY

- Using GALPROP, able to model starburst galaxy M82 radio and gamma ray emission
- We can put constraints on magnetic fields, gas densities, and cosmic ray propagation properties
- Spectral hardening along minor axis can be due to synchrotron cooling
- Gamma-rays are important for the modeling of cosmic rays

PRESSURE

