TeVPA 2017 Columbus, OH - August 8

New Insights on Particle Acceleration at Non-relativistic Shocks

Damiano Caprioli (University of Chicago)

Non-Relativistic Collisionless Shocks

Mediated by collective electromagnetic interactions Show prominent non-thermal activity

Heliospheric

Extra-Galactic

Propagate in environments likely rich in energetic particles (seeds)

Galactic

Astroplasmas from first principles

Full-PIC approach
Define electromagnetic fields on a grid
Move particles via Lorentz force
Evolve fields via Maxwell equations
Computationally very challenging!

Hybrid approach: Fluid electrons - Kinetic protons (Winske & Omidi; Burgess et al., Lipatov; Giacalone et al.; DC & Spitkovsky,....)

massless electrons for more macroscopical time/length scales

Hybrid simulations of collisionless shocks

dHybrid code (Gargaté et al, 2007; DC & Spitkovsky 2014)

Time = $880.00 [1/\omega_p]$

CR-induced Magnetic Field Amplification

 $x[c/\omega_p]$

Initial B field M_s=M_A=30

DC & Spitkovsky, 2013

Spectrum evolution

• Diffusive Shock Acceleration: non-thermal tail with universal spectrum $f(p) \propto p^{-4}$

Acceleration efficiency: ~15% of the shock bulk energy!

DC & Spitkovsky, 2014a

Ion Injection at Shocks

• The fraction of injected particles depends on v_{in} and ϑ (DC, Pop & Spitkovsky, 2015)

Ions injected into DSA undergo specular reflection at the reforming shock barrier and shock drift acceleration

Injection via Shock-Drift Acceleration (SDA)

lons advected downstream, and thermalized

High barrier (overshoot)

$|e \Delta \Phi| > m V_x^2/2$

Reflection probability ~ barrier duty cycle (~25%)

To overrun the shock, ions need a minimum energy E_{ini}, increasing with ϑ , which they may achieve via multiple SDA cycles

• After N cycles, only a fraction $\eta \sim 0.25^{N}$ has not been advected

Sor $\vartheta ≤ 45^\circ$, $E_{ini} ≤ 10E_{sh}$, which requires N ≤ 3 → η~1%

 \odot For $\vartheta > 45^{\circ}$, $E_{ini} > 10E_{sh}$, hence N > 3 and $\eta <<1\%$

Hybrid Simulations: Summary

DSA efficient at q-parallel, strong shocks
 CRs amplify B via streaming instability
 Injection of thermal ions at q-parallel shocks via specular reflection and SDA

What if there are already energetic seeds?
How does injection depend on mass/charge?

What if there are already energetic particles (seeds)?

The Martin The Carrie Star

Diffusive Shock Re-Acceleration

$= \frac{9}{60^{\circ}}$ shock with isotropic seeds $E_{CR} = 10E_{sh}$; $n_{CR} = 0.01$ (DC, Zhang, Spitkovsky, JPP submitted)

Seeds are effectively reflected at the shock, amplify the upstream B, and undergo DSA: DSRA!

Efficiency

80

 \circ Seed DSRA independent of ϑ , about 4x the initial energy density Also electrons are reaccelerated!

 \oslash A (ϑ <45°): As without seeds \oslash B (45°< ϑ <70°): Boosted to few % $OC(\vartheta > 70^\circ)$: No proton DSA

Quasi-Perpendicular SEEDED Shocks

Image: steeper start with seeds E_{CR}=10E_{sh}
 Seeds diffuse but their spectrum is steeper than DSA
 <u>Non-thermal protons only downstream</u>

Quasi-Perpendicular SEEDED Shocks

 $\oslash \ \vartheta = 80^{\circ}$ quasi-perp shock with seeds $E_{CR} = 10E_{sh}$ Seeds diffuse but their spectrum is steeper than DSA Solution Non-thermal protons only downstream

The Current in Reflected CRs

\circ It depends on the fraction of reflected seeds, n, and their speed, v_r

A Universal Current in Reflected CRs

 $\circ \eta$ and v_r balance their dependence on ϑ and M exactly: $J_{CR} = n_{CR}V_{sh}$ Easy explanation: CR anisotropy conserved at the shock crossing, in the shock frame For SNRs and Galactic CRs: T_{Bell}~10yr Minimum level of B-amplification for shocks in the ISM

SN1006 1517.500 MHZ

Radio (GeV electrons)

TeV acceleration only where quasi-par, but seed DSRA can produce GeV electrons where oblique/quasi-perp

SN 1006

X-rays. Red: thermal White: synchrotron (TeV electrons)

DC & Spitkovsky, 2014a

How does DSA depend on the ion mass/charge ratio?

Chemical Composition of Galactic CRs

"Urban legend": similar to solar (Simpson 1983)
Depends on volatility, on atomic mass A, on first ionization potential..
Above 1 TeV, fluxes of H, He, CNO, and Fe are comparable!

Nuclei heavier than H must be injected more efficiently

Hybrid Simulations: Acceleration of Heavy lons

The Onset of Ion Acceleration

Early times

 $\log_{10}[f_1(p_x)/\chi_1]~~(t=200\omega_c^{-1})$

Late times

 $\log_{10}[f_1(p_x)/\chi_1]$ $(t = 700\omega_c^{-1})$

2700

2750

2850

2800

2600

2650

with singly-ionized nuclei Ions injected by being isotropized just downstream: no shock reflection! Heavy ion injection after the onset of self-generated B turbulence DC, Yi, Spitkovsky 2017

-3

-3.5

2950

No Injection at Quasi-perpendicular Shocks

 \oslash M=20, oblique (ϑ =60°) shock: no injection into DSA! Having a large gyroradius (large A/Z) is not sufficient for injection
 Seed ions can still enter DSA (e.g., solar energetic particles/solar flares Tylka+05)

Seed Diffusive Shock Re-Acceleration effective Streaming instability with universal current $J_{CR} = n_{CR}V_{sh}$ Can trigger proton DSA for oblique shocks New phenomena at quasi-perpendicular shocks: steep seed spectra & proton acceleration downstream! CR reacceleration must happen in SNRs (e.g., W44,
 IC443, see Uchiyama+10, Cardillo+16) When proton DSA and B amplification are effective, heavy ions are preferentially injected Nuclei enhancement depends on A/Z and on the shock Mach number

Summary

magnetic turbulence

Ion Injection at Shocks: a Minimal Model

Earth's bow shock (AMPTE/IRM): Monte Carlo (Ellison, Möbius, Paschmann 1990)

