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Non-Relativistic Collisionless Shocks
Mediated by collective electromagnetic interactions   

Show prominent non-thermal activity

2

Propagate in environments likely 
rich in energetic particles (seeds)

Heliospheric
Galactic

Extra-Galactic



Astroplasmas from first principles

Full-PIC approach                                             

Define electromagnetic fields on a grid 

Move particles via Lorentz force 

Evolve fields via Maxwell equations 

Computationally very challenging! 

Hybrid approach: Fluid electrons - Kinetic protons                                
(Winske & Omidi; Burgess et al., Lipatov; Giacalone et al.; DC & Spitkovsky,….) 

massless electrons for more macroscopical time/length scales
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Protons

Electrons

Protons



Hybrid simulations of collisionless shocks
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Initial B field

 dHybrid code (Gargaté et al, 2007; DC & Spitkovsky 2014)



CR-induced Magnetic Field Amplification
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DC & Spitkovsky, 2013

Initial B field 
Ms=MA=30



Spectrum evolution
Diffusive Shock Acceleration: non-thermal tail with universal spectrum f(p)∝p-4 

Acceleration efficiency: ~15% of the shock bulk energy!
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Emax increases with time

Supra-thermal “bridge”

Universal 
power-law tail 
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Parallel vs Oblique shocks
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Ion Injection at Shocks
Ions injected into DSA undergo specular reflection at the reforming shock barrier and shock drift acceleration 

The fraction of injected particles depends on vin and 𝜗 (DC, Pop & Spitkovsky, 2015)
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Thermal (E/Esh<2)
Supra-thermal (2<E/Esh<10)
Non-thermal (E/Esh>10)
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Ions advected downstream, and thermalized

|e𝝙𝚽| < mVx
2/2

Vxaverage  
|e𝝙𝚽| |e𝝙𝚽| > mVx

2/2 Vx

Ions reflected upstream, and energized via SDA

High barrier (overshoot) 

Reflection probability ~ barrier duty cycle (~25%)  

To overrun the shock, ions need a minimum energy Einj, increasing 
with 𝜗, which they may achieve via multiple SDA cycles  

After N cycles, only a fraction η~0.25N has not been advected  

For 𝜗 ≲ 45˚, Einj ≲ 10Esh, which requires N ≲ 3 → η~1% 

For 𝜗 > 45˚, Einj > 10Esh,  hence N > 3 and η <<1%
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What if there are already  energetic seeds? 

How does injection depend on mass/charge?

Hybrid Simulations: Summary
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DSA efficient at q-parallel, strong shocks 

CRs amplify B via streaming instability 

Injection of thermal ions at q-parallel 
shocks via specular reflection and SDA
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What if there are already  
energetic particles (seeds)?
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Diffusive Shock Re-Acceleration
𝜗=60o shock with isotropic seeds ECR=10Esh ; nCR=0.01  (DC, Zhang, Spitkovsky, JPP submitted) 

Seeds are effectively reflected at the shock, amplify the upstream B, and undergo DSA: DSRA!
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Seeds

Protons 

B-amplification opens up quasi-parallel patches  
at the shock where protons can be injected



Efficiency

Seed DSRA independent of 𝜗, 
about 4x the initial energy density 

Also electrons are reaccelerated! 

A (𝜗<45o): As without seeds 

B (45o<𝜗<70o): Boosted to few % 

C (𝜗>70o): No proton DSA
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Seed DSRA

Proton DSA



Seeds

~E-4

Quasi-Perpendicular SEEDED Shocks
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𝜗=80o quasi-perp shock with seeds ECR=10Esh    

Seeds diffuse but their spectrum is steeper than DSA  

Non-thermal protons only downstream

Protons 



Seeds

~E-4

Quasi-Perpendicular SEEDED Shocks
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𝜗=80o quasi-perp shock with seeds ECR=10Esh    

Seeds diffuse but their spectrum is steeper than DSA  

Non-thermal protons only downstream

Protons 

New phenomena: 

I) Re-acceleration with non-universal (steeper) spectra 

II) Non-DSA proton acceleration: reconnection, second-order Fermi?



The Current in Reflected CRs
It depends on the fraction of reflected seeds, η, and their speed, vr
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η and vr
 balance their 

dependence on 𝜗 and M exactly:  

          JCR= nCRVsh 

Easy explanation: CR anisotropy 
conserved at the shock crossing, 
in the shock frame 

For SNRs and Galactic CRs: 

                        TBell~10yr   

Minimum level of B-amplification                                                                                                                                        
for shocks in the ISM

JCR [nCRVsh]

A Universal Current in Reflected CRs



SN 1006

TeV acceleration only where 
quasi-par, but seed DSRA 

can produce GeV electrons 
where oblique/quasi-perp
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X-rays. Red: thermal 
White: synchrotron  

(TeV electrons)

Simulations of ion acceleration at shocks: DSA efficiency 17

ϑ = 0deg

Bz/B0

ϑ = 45deg

Bz/B0

ϑ = 80deg

Bz/B0

Figure 13. Self-generated component of the magnetic field, Bz , in units of the initial field B0, which lies in the xy-plane; the three panels
correspond to t = 200ω−1

c for different 3D simulations (section 8) with inclinations ϑ = 0, 45, 80 deg (top to bottom). The iso-volume
rendering shows 10 levels of −1 ≤ Bz ≤ 1, with the respective color code in the legends. The shock position is marked by a plane of
enhanced magnetic field, around x = 600c/ωp. The amount of magnetic field amplification is very different in the parallel case, where in
the upstream there are several regions with Bz ≈ B0, and the quasi-perpendicular case, where in the upstream Bz ! 0.1B0. Also, the
magnetic field exhibits large-scale turbulent structures (both upstream and downstream) for ϑ = 0deg, while it is mainly along By for
ϑ = 80deg. The ϑ = 45 deg case shows intermediate properties. A color figure is available in the online journal.
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Proton-generated B

Simulations of ion acceleration at shocks: DSA efficiency 17
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Figure 13. Self-generated component of the magnetic field, Bz , in units of the initial field B0, which lies in the xy-plane; the three panels
correspond to t = 200ω−1

c for different 3D simulations (section 8) with inclinations ϑ = 0, 45, 80 deg (top to bottom). The iso-volume
rendering shows 10 levels of −1 ≤ Bz ≤ 1, with the respective color code in the legends. The shock position is marked by a plane of
enhanced magnetic field, around x = 600c/ωp. The amount of magnetic field amplification is very different in the parallel case, where in
the upstream there are several regions with Bz ≈ B0, and the quasi-perpendicular case, where in the upstream Bz ! 0.1B0. Also, the
magnetic field exhibits large-scale turbulent structures (both upstream and downstream) for ϑ = 0deg, while it is mainly along By for
ϑ = 80deg. The ϑ = 45 deg case shows intermediate properties. A color figure is available in the online journal.

𝜗=45oSimulations of ion acceleration at shocks: DSA efficiency 17
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Figure 13. Self-generated component of the magnetic field, Bz , in units of the initial field B0, which lies in the xy-plane; the three panels
correspond to t = 200ω−1

c for different 3D simulations (section 8) with inclinations ϑ = 0, 45, 80 deg (top to bottom). The iso-volume
rendering shows 10 levels of −1 ≤ Bz ≤ 1, with the respective color code in the legends. The shock position is marked by a plane of
enhanced magnetic field, around x = 600c/ωp. The amount of magnetic field amplification is very different in the parallel case, where in
the upstream there are several regions with Bz ≈ B0, and the quasi-perpendicular case, where in the upstream Bz ! 0.1B0. Also, the
magnetic field exhibits large-scale turbulent structures (both upstream and downstream) for ϑ = 0deg, while it is mainly along By for
ϑ = 80deg. The ϑ = 45 deg case shows intermediate properties. A color figure is available in the online journal.

𝜗=0o

DC & Spitkovsky, 2014a
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Fig. 4.— Fractional polarization p of SN 1006 at 1.4 GHz. The resolution is 10 arcsecs. The

color scale is shown at the right. Only pixels where p was at least twice its error were kept.

B0

Polarization

Radio (GeV electrons)



How does DSA depend on the 
ion mass/charge ratio?
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Chemical Composition of Galactic CRs
 “Urban legend”: similar to solar (Simpson 1983) 

Depends on volatility, on atomic mass A, on first ionization potential… 

 Above 1 TeV, fluxes of H, He, CNO, and Fe are comparable!
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DC et al. 2011

Meyer, Drury & Ellison 1997

Nuclei heavier 
than H must be 
injected more 

efficiently



Hybrid Simulations: Acceleration of Heavy Ions

Quasi-parallel shock, M=20 
Ion DSA when proton DSA! 
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Post-shock Ti scales with Ai 

Emax,i scales with Zi 

The tail normalization scales with (Ai/Zi)2 

Explains GCR chemical enhancements



The Onset of Ion Acceleration
M=20, parallel, 
with singly-ionized 
nuclei  

Ions injected by 
being isotropized 
just downstream: 
no shock reflection! 

Heavy ion injection 
after the onset of 
self-generated B 
turbulence  

DC, Yi, Spitkovsky 2017
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No Injection at Quasi-perpendicular Shocks
M=20, oblique (𝜗=60o) shock: no injection into DSA! 

Having a large gyroradius (large A/Z) is not sufficient for injection 

Seed ions can still enter DSA (e.g., solar energetic particles/solar flares Tylka+05)
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Summary

Seed Diffusive Shock Re-Acceleration effective 

Streaming instability with universal current JCR = nCRVsh 

Can trigger proton DSA for oblique shocks 

New phenomena at quasi-perpendicular shocks:     
steep seed spectra & proton acceleration downstream! 

CR reacceleration must happen in SNRs (e.g., W44, 
IC443, see Uchiyama+10, Cardillo+16) 

When proton DSA and B amplification are effective, 
heavy ions are preferentially injected 

Nuclei enhancement depends on A/Z and on the 
shock Mach number
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Similar phenomenology may 
be triggered by pre-existing 

magnetic turbulence

Seeds



Ion Injection at Shocks: a Minimal Model
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Einj is larger at oblique shocks:   
injection requires more SDA cycles, 
and fewer particles can achieve Einj  
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Early Heavy Theory 
Earth’s bow shock (AMPTE/IRM): Monte Carlo (Ellison, Möbius, Paschmann 1990) 

Hybrid simulations with alpha-particles  (Trattner & Scholer 1991, more recently Kropotina+2016)
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Anomalous Abundances in CRs and SEPs

27Tylka+05

CR discrepant 
hardening (CREAM10) 

Chemical composition 
of gradual SEPs (e.g., 
Mason+04, Tylka+05, 

Reames15 Desai+16a,b) 


