

Galactic Sources with HAWC

Petra Huentemeyer petra@mtu.edu

Michigan Tech

http://www.webcamsdemexico.com/webcam-pico-de-orizaba.html 8/8/2017

Galactic HAWC Observations

Transients

- TeV Binaries
- Flares
- Highest energy accelerators
- Extended emission
 - Diffuse emission
 - Fermi bubbles
 - Molecular clouds
 - Nearby PWNe
 - SNRs

High Duty Cycle

Sensitivity and angular resolution > ~ 10 TeV
Wide field of view and angular resolution (1°-0.2°, 68% cont.)

- Unusual, rare to have a natural mechanism repeatedly accelerating particles
- Many confirmed radio and X-ray binaries but only 5 γ-ray binaries: PSR B1259-63, LS 5039, LS I +61 303, HESS J0632+057, 1FGL J1018.6-5856, HESS J1832-093(?)
- All 5 γ -ray binaries observed in TeV are **point-like sources**
- γ-ray binaries: compact objects in orbit with massive companion stars
- mechanism of γ -ray production not fully understood \rightarrow **mismatches** in observations at **different energy bands** unexplained
- Unbiased survey of our Galaxy could lead to more discoveries allowing source-class studies

ICRC2017, Contrib. [369] [GA033] Searching for TeV Gamma-ray Emission from Binary Systems with HAWC – Chang Rho, UR

Source	RA	Dec	Туре	\mathbf{d}	τ	TS	Signif.	Dif Flux @ 7 TeV
				[kpc]	[day]		[post-trial]	$[{ m TeV}^{-1}~{ m cm}^{-2}~{ m s}^{-1}]$
IGR J00370+6122	00:37	$+61^{\circ}21'$	HMXB	3.4	15.67	0.00	$< 2\sigma$	$9.21 \cdot 10^{-15}$
V662 Cas	01:18	$+65^{\circ}17'$	HMXB	6.5	11.60	0.15	$< 2\sigma$	$5.75 \cdot 10^{-14}$
IGR J01363+6610	01:36	$+66^{\circ}11'$	HMXB	2.0	-	0.00	$< 2\sigma$	$6.03 \cdot 10^{-14}$
IGR J01583+6713	01:58	$+67^{\circ}13'$	XB	4.1	-	0.26	$< 2\sigma$	$9.51 \cdot 10^{-14}$
VES 737	02:20	$+63^{\circ}01'$	Bin	5.0	-	0.26	$< 2\sigma$	$4.38\cdot10^{-14}$
LS I +61 303	02:40	$+61^{\circ}13'$	HMXB	2.0	26.50	0.00	$< 2\sigma$	$1.66 \cdot 10^{-14}$
XTE J0421+560	04:19	$+55^{\circ}59'$	HMXB	2.0	19.41	0.04	$< 2\sigma$	$1.29 \cdot 10^{-14}$
GRO J0422+32	04:21	$+32^{\circ}54'$	LMXB	2.0	0.21	1.43	$< 2\sigma$	$3.93 \cdot 10^{-15}$
RX J0440.9+4431	04:40	$+44^{\circ}31'$	HMXB	2.9	-	7.41	$< 2\sigma$	$1.10 \cdot 10^{-14}$
IGR J06074+2205	06:07	$+22^{\circ}05'$	HMXB	4.5	-	0.01	$< 2\sigma$	$2.15 \cdot 10^{-15}$
V616 Mon	06:22	$-00^{\circ}20'$	LMXB	1.1	0.33	0.00	$< 2\sigma$	$2.54 \cdot 10^{-15}$
HESS J0632+057	06:32	$+05^{\circ}48'$	HMXB	1.6	315 ± 5	2.39	$< 2\sigma$	$4.85 \cdot 10^{-15}$
PSR J1023+0038	10:23	$+00^{\circ}53'$	LMXB	1.3	-	5.27	$< 2\sigma$	$6.83 \cdot 10^{-15}$
XTE J1118+480	11:18	$+48^{\circ}02'$	LMXB	1.7	0.17	1.84	$< 2\sigma$	$9.71 \cdot 10^{-15}$
LS IV -01 1	17:07	$-01^{\circ}05'$	Star	0.3	-	0.00	$< 2\sigma$	$1.68 \cdot 10^{-15}$
PSR J1810+1744	18:10	$+17^{\circ}41'$	MSP	2.0	-	0.25	$< 2\sigma$	$2.62 \cdot 10^{-15}$
PSR J1816+4510	18:16	$+45^{\circ}10'$	MSP	4.0	0.36	0.15	$< 2\sigma$	$5.53 \cdot 10^{-15}$
LS 5039	18:26	$-14^{\circ}50'$	HMXB	2.9	3.90	139.97	11.54σ	$6.37 \cdot 10^{-14}$
4U 1907+09	19:09	$+09^{\circ}49'$	HMXB	4.0	8.37	10.87	2.17σ	$7.08 \cdot 10^{-15}$
SS 433	19:12	$+04^{\circ}59'$	XB	5.5	13.10	17.27	3.29σ	$8.51 \cdot 10^{-15}$
IGR J1914+0951	19:14	$+09^{\circ}52'$	HMXB	5.0	13.56	80.40	8.58σ	$1.50 \cdot 10^{-14}$
Cyg X-1	19:58	$+35^{\circ}12'$	HMXB	2.2	5.60	4.99	$< 2\sigma$	$5.96 \cdot 10^{-15}$
PSR J1959+2048	19:59	$+20^{\circ}48'$	Bin	2.5	-	3.10	$< 2\sigma$	$4.08 \cdot 10^{-15}$
GS 2000+251	20:02	$+25^{\circ}14'$	LMXB	2.7	0.35	0.00	$< 2\sigma$	$2.14 \cdot 10^{-15}$
V404 Cyg	20:24	$+33^{\circ}52'$	LMXB	2.4	6.47	0.98	$< 2\sigma$	$3.97 \cdot 10^{-15}$
EXO 2030+375	20:32	$+37^{\circ}38'$	HMXB	5.0	46.02	16.85	3.23σ	$9.54 \cdot 10^{-15}$
Cyg X-3	20:32	$+40^{\circ}57'$	HMXB	7.0	0.20	77.54	8.41σ	$2.15 \cdot 10^{-14}$
LS III +49 13	20:56	$+49^{\circ}40'$	BH	0.1	-	0.00	$< 2\sigma$	$4.67 \cdot 10^{-15}$
SAX J2103.5+4545	21:03	$+45^{\circ}45'$	HMXB	6.5	12.68	0.00	$< 2\sigma$	$2.43 \cdot 10^{-15}$
4U 2206+543	22:07	$+54^{\circ}31'$	HMXB	2.6	9.57	0.00	$< 2\sigma$	$3.36 \cdot 10^{-15}$
MWC 656	22:42	$+44^{\circ}43'$	HMXB	2.6	-	0.40	$< 2\sigma$	$6.10 \cdot 10^{-15}$

- γ- ray binary candidates:
 - 3 known γ-ray binaries in HAWC FOV (red)
 - 5 unconfirmed locations with TS > 10
 - 28 XRBs with short orbital periods
- TS fitting a power law with idx = -2.7 and E_{piv} = 7 TeV.
- Post-trial significances for each of the sources (< 2σ UL; > 2σ LC).

ICRC2017, Contrib. [369] [GA033] Searching for TeV Gamma-ray Emission from Binary Systems with HAWC – Chang Rho, UR

ICRC2017, Contrib. [369] [GA033] Searching for TeV Gamma-ray Emission from Binary Systems with HAWC – Chang Rho, UR

HESS J0632+057

- First discovered as a TeV source by H.E.S.S. in 2007.
- Variability later found in Xrays ($P_{orb} = 321 \pm 5$ days) then also observed in TeV ($P_{orb} = 315 \pm 5$ days).
- Only γ-ray binary observed by all three major IACTs (H.E.S.S., VERITAS & MAGIC).
- Binary system with a nearby Be star, MWC 148.
- No HE observation by Fermi/LAT.

ICRC2017, Contrib. [369] [GA033] Searching for TeV Gamma-ray Emission from Binary Systems with HAWC – Chang Rho, UR

HESS J0632+057

ICRC2017, Contrib. [369] [GA033] Searching for TeV Gamma-ray Emission from Binary Systems with HAWC – Chang Rho, UR

HESS J0632+057

ICRC2017, Contrib. [369] [GA033] Searching for TeV Gamma-ray Emission from Binary Systems with HAWC – Chang Rho, UR

Expect detection with ~3 years of data (power law), ~8 years of data (cutoff @ 5 TeV).

ICRC2017, Contrib. [896] [GA231] A First Look at Periodicity in HAWC with TeV Binaries – Chad Brisbois, MTU

P. Bordas *et al.* [H.E.S.S. Collaboration], AIP Conf. Proc. 1792, no. 1, 040017 (2017) doi:10.1063/1.4968921 [arXiv:1610.03264 [astro-ph.HE]]

What happens above 10 TeV?

ICRC2017, Contrib. [896] [GA231] A First Look at Periodicity in HAWC with TeV Binaries – Chad Brisbois, MTU

- LS 5039
 - High-Mass X-ray binary O star $23M_{\odot}$
 - Compact Companion $3.7 M_{\odot}$
 - 3.9 day period
- <u>Challenge</u>: Located in a busy region, near HESS J1825-137 & HESS J1826-130. Both are extended sources!

ICRC2017, Contrib. [896] [GA231] A First Look at Periodicity in HAWC with TeV Binaries – Chad Brisbois, MTU

- Method:
 - 1. Split dataset according to phase of LS 5039
 - 2. Fit normalization with a fixed index (-2.0)
 - 3. Subtract high flux map from low flux map
 - Perform same procedure with high/low energy bins
 - 5. Check for significant difference between the flux

$$\mathfrak{S} = rac{F_{high} - F_{low}}{\sqrt{\sigma_{high}^2 + \sigma_{low}^2}}$$

ICRC2017, Contrib. [896] [GA231] A First Look at Periodicity in HAWC with TeV Binaries – Chad Brisbois, MTU

High State – 342 days

Low State – 418 days

ICRC2017, Contrib. [896] [GA231] A First Look at Periodicity in HAWC with TeV Binaries – Chad Brisbois, MTU

Highest Energy Accelerators

ICRC2017, Contrib. [436] [GA251] Probing Galactic Diffuse TeV Gamma-Ray Emission with the HAWC Observatory – Hao Zhou, LANL

<u>Challenge:</u> @ TeV energies, gamma-ray emission from localized sources (resolved and unresolved) dominates over truly diffuse emission

Red Points: Combination of

- Extended emission of 2HWC sources not accounted for in the catalog
- Unresolved sources below the detection threshhold
- Galactic diffuse emission

ICRC2017, Contrib. [436] [GA251] Probing Galactic Diffuse TeV Gamma-Ray Emission with the HAWC Observatory – Hao Zhou, LANL

- 24 2HWC sources
- Resolved sources account for ~ 1/3 of the total emission
- Source-subtracted emission is 2-3 times of the emission predicted by GALPROP (Strong et al. 2010)

ICRC2017, Contrib. [436] [GA251] Probing Galactic Diffuse TeV Gamma-Ray Emission with the HAWC Observatory – Hao Zhou, LANL

- 7 2HWC sources
- Resolved sources account for ~ 1/5 of the total emission
- Source-subtracted emission is an order of magnitude higher than the emission predicted by GALPROP (Strong et al. 2010)

ICRC2017, Contrib. [436] [GA251] Probing Galactic Diffuse TeV Gamma-Ray Emission with the HAWC Observatory – Hao Zhou, LANL

- No 2HWC sources
- No significant gamma-ray emission

ICRC2017, Contrib. [916] [GA034] Techniques for Measuring Galactic Diffuse Emission Flux and their Preliminary Results in Confused Regions – Chang Rho, UR

Preliminary

GALPROP-like template or...

Extended Emission – N. Fermi Bubble

A.U. Abeysekara et al 2017, ApJ 842 85

Extended Emission – This Session

TeVPA2017, Searching for Gamma-Ray Signal from Giant Molecular Clouds with HAWC – Hugo Ayala, PSU

[。]9

$$F_{\gamma} = \begin{cases} 1.45 \times 10^{-13} E_{\text{TeV}}^{-1.75} (M_5/d_{\text{kpc}}^2) \,\text{cm}^{-2} \,\text{s}^{-1} & 100 \,\text{MeV} < E_{\gamma} < 1 \,\text{TeV} \\ 2.85 \times 10^{-13} E_{\text{TeV}}^{-1.6} (M_5/d_{\text{kpc}}^2) \,\text{cm}^{-2} \,\text{s}^{-1} & E_{\gamma} > 1 \,\text{TeV} \end{cases}$$

Extended Emission – This Session

TeVPA2017, Study of Gamma-Ray Emission at the Cygnus Cocoon Region

l[°]

K.km/s

Multisource fits and morphological models Disentangle emission components

Extended Emission – This Session

TeVPA2017, Constraints from Observations of Geminga and Monogem – Jim Linnemann, MSU

ICRC2017, Contrib. [922] [GA250] Constraining the Diffusion Coefficient with HAWC TeV Gamma Ray Observations of Two Nearby Pulsar Wind Nebulae – **Hao Zhou, LANL**

ICRC2017, Contrib. [900] [GA065] EDGE: a code to calculate diffusion of cosmic-ray electrons and their gamma-ray emission – Rubén Lopéz-Coto, MPIK

ICRC2017, Contrib. [510] [GA122] Constraining the Origin of Local Positrons with HAWC TeV Gamma-Ray Observations of Two Nearby Pulsar Wind Nebulae – Francisco Salesa Greus, IFJ-PAN

Multi-Instrument, Wavelengths, Messenger, and Alerts

- TeVPA2017, Tuesday: IceCube Search for Galactic Neutrinos Using the HAWC 2HWC Catalog – Josh Wood, UW-Mad
- TeVPA2017, this session: VERITAS and Fermi-LAT Observations of TeV Gamma-Ray Sources from the second HAWC catalog – Nahee Park
- TeVPA2017, this session: Follow-up VERITAS and NuSTAR Observations of Galactic HAWC Gamma-Ray Sources

Outlook

Looking forward to

- More data
- Better understanding of systematics
- More cross-observatory collaboration
- More joint analyses