Performances of depleted Monolithic Active Pixel Sensor in a high-resistivity CMOS process for X-ray detection

Julian Heymes, Maciej Kachel, Andrei Dorokhov, Mathieu Goffe, Christine Hu-Guo, Luis Alejandro Pérez Pérez, Marc Winter, Jerome Baudot

julian.heymes@iphc.cnrs.fr

Position Sensitive Detector 11, Milton Keynes, UK

04 Sept 2017

• PIPPER-2

Description of the sensor
 Detection performances
 Radiation hardness (NIEL)

o Determination of the depletion depth in MAPS

TCAD simulations
 Determination with ⁵⁵Fe and ⁹⁰Sr irradiations

• Soft X-rays range: A few eV to 10 keV

- Soft X-rays range: A few eV to 10 keV
- Photoelectric effect dominates below 50 keV in Silicon

□ Creation of N electron hole pairs : $N \approx \frac{E_{\gamma}}{3.62 \ [eV]}$, $\langle \Delta N^2 \rangle = F \cdot N$ (F: Fano factor)

- Metallization layers (process)
 - □ Absorption of softer X-rays
 - **Backside illumination mandatory with full depletion**

stopped by the metal layers _ PMOS -NMOS P+ P+ P+ P+ P+ P+ N+ N+ N-well P-well N-well Deep P-well P- Epitaxial layer P substrate P-high resistivity substrate or Epitaxial layer

Low energy X-Ray photon

- Soft X-rays range: A few eV to 10 keV
- Photoelectric effect dominates below 50 keV in Silicon

□ Creation of N electron hole pairs : $N \approx \frac{E_{\gamma}}{3.62 \, [eV]}$, $\langle \Delta N^2 \rangle = F \cdot N$ (F: Fano factor)

- Metallization layers (process)
 - □ Absorption of softer X-rays
 - □ Backside illumination mandatory with full depletion
- $\circ \quad \text{Undepleted substrate collection}$
 - Diffusion of the charges
 - □ Incomplete charge collection due to recombination

• Soft X-rays range: A few eV to 10 keV

Photoelectric effect dominates below 50 keV in Silicon

□ Creation of N electron hole pairs : $N \approx \frac{E_{\gamma}}{3.62 \ [eV]}$, $\langle \Delta N^2 \rangle = F \cdot N$ (F: Fano factor)

- Metallization layers (process)
 - □ Absorption of softer X-rays
 - □ Backside illumination mandatory with full depletion
- Undepleted substrate collection
 - Diffusion of the charges
 - □ Incomplete charge collection due to recombination
- Depleted substrate collection
 - Drift of the charges
 - **Full collection** (in a single pixel) before recombination
- Depletion Depth in a dissymmetric junction
 - \Box Deep depletion Ξ High resistivity and/or increased bias voltage
- \circ Depletion from the top
 - $\hfill\square$ No backside contact $\hfill \rightarrow$ thin entrance window
 - ➔ Soft X-rays not blocked

	CCD	Monolithic Active Pixel Sensor	Hybrid Pixel Detector (Si)
Strength	 Small pixel pitch within large matrices Wide Energy range (50 eV – 40 keV) Energy resolution close to Fano limit Fully depleted Low noise 	 Small pixel pitch within large matrices Single particle counting Low noise (a few e⁻ achieved) at room temperature or with moderate cooling Low cost Min. detectable energy > 100 eV Depletion (fully depleted with backbias) 	 Single particle counting Very high counting rate Fully depleted (up to 1 mm) High radiation hardness (> Grad) Advanced in-pixel processing because of
Weakness	 at very low temperatures (< -50 °C) No single particle image Expensive Limited readout speed 	 Moderate counting rate Less in-pixel processing than hybrid pixel detectors 	 (very) large pixel pitch (except MÖNCH) Noise impacted by the detector connection (> 50 e⁻) Lowest energy detectable (> 1.75 keV) depending on the threshold applied High cost (bonding, detector)
	DOI: 10.1107/S0021889813016592 DOI: 10.1109/TNS.2012.2228410 DOI: 10.1109/NSSMIC.2011.6154370	DOI: 10.1016/j.nima.2010.07.066 DOI: 10.1088/1748-0221/11/11/C11020 DOI: 10.1088/1748-0221/12/01/C01039	DOI: 10.1109/TNS.2007.906163 DOI: 10.1016/j.nima.2007.01.153 DOI: 10.1063/1.4938166 DOI: 10.1109/NSSMIC.2009.5402196 DOI: 10.1088/1748-0221/9/05/C05015 DOI: 10.1088/1748-0221/10/01/C01032 DOI: 10.1088/1742-6596/425/6/062001

Strips, 3-D, SOI, DEPFET... not mentioned

J. Heymes (IPHC) - Performances of depleted MAPS in HR CMOS process for X-Ray Detection - PSD11 - 03/09/2017

Depletion studies Test sensor: PIPPER-2

- Pixelated sensor for Ionizing Particle and Photons Energy Resolved detection
- Analog sensor
- Technology : CMOS CIS 180 nm
- Designers : Maciej Kachel, Andreï Dorokhov
- Substrates:
 - \square <u>HR18:</u> 18 μm high-resistivity epitaxial layer (> 1 kΩ·cm)
 - \Box <u>CZ</u>: 280 µm high-resistivity Czochralski substrate (> 600 Ω ·cm)
- o 128 rows, 32 columns
- Pixel pitch : 22 μm
- Rolling shutter readout with offline CDS
 - □ Column are readout in parallel
- 4 versions of pixels (8 columns each)
 - □ Depletion studies (AC-coupled 3-T architecture)
 - $\circ~$ Pixel 1: Ø 5µm round collection diode
 - $\circ~$ Pixel 2: Ø 3 μm round collection diode
 - $\circ~$ Pixel 3: 4 x Ø 4 μm round collection diode
 - □ Low power amplifier (Pixel 4)

Depletion studies Test sensor: Pixel architecture

• Pixel architecture (Pipper-2 pixel 1)

- □ 22 µm pitch
- $\hfill \hfill \hfill$
- □~21 fF fringe capacitor for AC-coupling
- □ Source follower
- **Depletion voltage applied from the top**

Fringe decoupling capacitor preffered over MIM

- □ Lower leakage current
- □ Higher breakdown limit

Leakage current influenced by cooling

X-Ray detection performances

HR-18 & Czochralski at 30 V

Pipper-2 measurements (presc. 2, T°_{cool}=7 °C, V_{diode}=30V) ⁵⁵Fe irradiation – 400000 frames

Radiation hardness NIEL

- HR18 sensors cooled to -20 °C 0
- Non ionizing irradiation 0
- Leakage current increased with fluence (improved with cooling) 0
- Deterioration of collection efficiency 0
 - \Box Calibration peaks merged above 1x10¹⁴ n_{eq}/cm²
- SNR acceptable for tracking to fluences up to $5 \times 10^{14} n_{eo}/cm^2$ 0
- Depletion allows fast charge collection before trapping 0

TCAD simulations of the depleted volume HR18

• Epitaxial layer

- **D** Supposed to be 18 μ m thick, > 1 k Ω ·cm (> 1.3 · 10¹³ cm⁻³)
- **D** Maximum measured > 10 k Ω ·cm
- \Box Epitaxial layer meets substrate at \approx 18 μ m
- $\hfill 1$ k\Omega·cm reached at \approx 10.5 μm

\circ Simulation

- Doping profile of the epitaxial layer implemented
- $\hfill\square$ Spherical depleted volume before merging, then plane
- $\hfill\square$ Saturation of depleted depth at \approx 13 μm
 - The doping profile of the epitaxial layer is limiting the extension of the depletion
- □ At V_{DIODE} ≈ 15 V → Merging of the depleted volume between two adjacent pixels

TCAD simulations of the depleted volume Czochralski

Czochralski substrate

- \Box 60 µm thick simulated
- □ No backside contact
- □ 4 constant doping profile implemented
 - o 600 Ω ·cm (Prototype value)
 - o 1 k Ω ·cm
 - o 2 kΩ·cm
 - \circ > 10 k Ω ·cm (max. of HR-18)

$\circ \hspace{0.1in} \text{Simulation}$

□ 600 Ω·cm

- Depletion reaches ≈ 16 μ m
- o Improved with higher resistivities
 - 20 μm with 2 k Ω ·cm
- Late merging (40 V)
- $\hfill\square$ Very high resistivity
 - $\circ~$ Depth up to 35 μm
 - May be bigger since the substrate is close to be intrinsic

60 µm

Determination of the collection depth

Using the ⁵⁵Fe calibration peaks

6.49 keV

200

30

keV

250

300

J. Heymes (IPHC) - Performances of depleted MAPS in HR CMOS process for X-Ray Detection - PSD11 - 03/09/2017

Determination of the collection depth

Using the ⁵⁵Fe calibration peaks – HR-18 vs. CZ

Determination of the collection depth

Using the ⁵⁵Fe spectrum

12

• Total counts in spectrum (cluster charge > 110 ADCu for noise suppression)

- □ Point at 30 V from HR18 as reference
- $\hfill\square$ Depth determined from relative attenuation from HR-18 at 30 V
- □ HR18: Quick saturation around 13 µm → Depletion depth
- **CZ:** Collection depth up to 46 μ m (81 % attenuation for Mn-K α) **\rightarrow** Max. collection depth (limit of sensitivity of ⁵⁵Fe)
- **→** Effective depletion depth between collection depth with good resolution (21 μm) and max. collection depth (46 μm)

Determination of the collection depth Using MIPs - ⁹⁰Sr

V_{diode} [V]

Conclusions and perspectives

Valid for charged particles tracking in highly radiative environment

CMOS MAPS with depletion voltage applied from the top 0

18 µm thick high resistivity epitaxial layer 0

- □ ENC=24 e⁻, Energy resolution at 5.9 keV=298 eV
- \Box Suitable for tracking with NIEL irradiation up to 5 x 10¹⁴ n_{eq}/cm²
- **Γ** Fully depleted at 13 μm
- Charges generated at max. 15 µm
- \rightarrow Limited by the doping profile

High resistivity Czochralski substrate 0

- \Box ENC=26 e⁻. Energy resolution at 5.9 keV=686 eV
- \Box Collection with good energy resolution up to 22 µm
- \Box Collection up to 46 µm (diffusion)
- Required for soft X-rays with thinning to 50 µm \Box Depletion depth in between \rightarrow Uncertainties on the effective depletion depth

Thinned CZ sensors to 50 µm (40 µm sensitive) to be measured 0

- □ Various backside processing combinations
- □ To measure the sensors with front side and back side illumination to determine the effective depletion depth in HR CMOS MAPS