Characterisation of Small Electrode HPGe Detectors

Carl Unsworth, University of Liverpool

7 September 2017

BEGe and SAGe Well Detectors

- Small electrode configuration for reduced capacitive noise.
- BEGe Detectors in use for some years for spectroscopy with low-medium gamma-ray energies.
- FWHM @ 60 keV = 0.58
- FWHM @ 1332 keV = 1.69

BEGe and SAGe Well Detectors

- SAGe detectors employ novel well-like geometry to enable large volume crystals to fully deplete.
- Based on design of point contact detector by David Radford and Ren Cooper at ORNL.
- A novel HPGe detector for gamma-ray tracking and imaging, Cooper Et Al, NIM A 2011.
- FWHM @ 60 keV = 0.72
- FWHM @ 1332 keV = 2.11

BEGe and SAGe Well Detectors

- Simple readout through resistive feedback CSP.
- No intrinsic position sensitivity in these detectors.

Goals of This Work

Characterisation of both detector types carried out in Liverpool over the last 2 years. Goals include:

- Understand signal formation in these detectors.
 - Long drift of holes through low field region not well reproduced by existing simulations.
 - Accurate simulation crucial for development of future instruments.
- Develop algorithms for improved spectral quality through PSA.
 - Fast methods based on risetime gating for implementation in existing DAQ hardware.

Characterisation Methods

- Detectors scanned with collimated beam of 662 keV photons.
- Coincidences with secondary BGO detectors measured to locate single-site interaction in three dimensions.
- Mean of multiple events formed at each position to reduce noise contribution.

Signal Shapes in BEGe 6530

- Intensity of singles interactions in BEGe reveals crystal geometry.
- · Coincidences recorded at selected points only.

Signal Shapes in BEGe 6530

- Signal shapes depend on interaction position.
- Faster risetime near to the electrode, particularly in the first 20% of the height.
- This difference is more pronounced in smaller BEGe's but still noticable here.

Gamma-ray Interactions

- Full-energy peaks produced by photoelectric interactions or multiple Compton scatters.
- Background at low energy mainly due to Compton scatter of high-energy gamma rays.

Gamma-ray Interactions

- Low-energy background critical to sensitivity in a number of applications:
 - Lake sediment dating with 46.5 keV gamma from $^{210}{\rm Pb}.$
 - Identification of Uranium decay products in presence of background from fission fragments ¹³⁷Cs and ⁶⁰Co.

Testing PSA in BEGe 6530

• Can we gate on the risetime to supress low energy interactions far from the surface?

Testing PSA in BEGe 6530

• Can we gate on the risetime to supress low energy interactions far from the surface?

Testing PSA in BEGe 6530

- Results of background rejection modest with this very large BEGe.
- Wide range of charge drift times for surface interactions limit performance.
- Simulations suggest better results will be obtained for smaller detectors.
- Tests on 2020 and 2825 BEGe's underway.

SAGe Characterisation

 As with BEGe, singles intensity used to determine crystal geometry and orientation.

SAGe Characterisation

 Trigger time difference between Ge and BGO used to align very slow rising pulses.

- Field in detector calculated using finite difference approach.
- Charge then tracked through field using mobility parameterisation from *Characterization of large volume HPGe detectors. Part I: Electron and hole mobility parameterization, Bruyneel Et AI, NIM A, 2006.*

- Simulated signals much faster than experiment when drifting through weak field region.
- Same mobility parameterisation works well for coaxial detectors e.g. AGATA

- Impurity gradient crucial in determining field in these detectors.
- Depletion bias provides check on manufacturer's quoted impurity concentrations.
- Temperature dependance of mobility likely playing a role.

- Currently optimising simulation to match correct drift times.
- We can't explain the discrepency without reducing the value of <100> hole mobility.

Conclusions

- SAGe and BEGe detectors characterised at Liverpool.
- Data being used to inform simulation development for long-drift-time HPGe detectors.
- Modest results performing fully digital Compton background rejection on BEGe 6530.
- Measurements underway to exploit same techniques on smaller BEGe's.

Thank You

Thanks to collaborators and conference organisers.

A.J. Boston¹, L.J. Harkness¹, D.S. Judson¹, P.J.
Nolan¹, O.S. Thomas¹, A.S. Adekola², J. Colaresi²,
W.F. Mueller²

1 - Oliver Lodge Laboratory, University of Liverpool, Liverpool, L69 7ZE

2 - CANBERRA Industries Inc., 800 Research Parkway, Meriden, CT, 06450, USA

Extra Slides

