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BEGe and SAGe Well Detectors

• Small electrode
configuration for reduced
capacitive noise.

• BEGe Detectors in use for
some years for spectroscopy
with low-medium
gamma-ray energies.

• FWHM @ 60 keV = 0.58

• FWHM @ 1332 keV = 1.69



BEGe and SAGe Well Detectors

• SAGe detectors employ
novel well-like geometry to
enable large volume crystals
to fully deplete.

• Based on design of point
contact detector by David
Radford and Ren Cooper at
ORNL.

• A novel HPGe detector for
gamma-ray tracking and
imaging, Cooper Et Al, NIM
A 2011.

• FWHM @ 60 keV = 0.72

• FWHM @ 1332 keV = 2.11



BEGe and SAGe Well Detectors

• Simple readout through
resistive feedback CSP.

• No intrinsic position
sensitivity in these
detectors.



Goals of This Work

Characterisation of both detector types
carried out in Liverpool over the last 2
years. Goals include:

• Understand signal formation in these
detectors.

• Long drift of holes through low
field region not well reproduced by
existing simulations.

• Accurate simulation crucial for
development of future instruments.

• Develop algorithms for improved
spectral quality through PSA.

• Fast methods based on risetime
gating for implementation in
existing DAQ hardware.
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Characterisation Methods

• Detectors scanned with collimated beam of 662 keV photons.

• Coincidences with secondary BGO detectors measured to
locate single-site interaction in three dimensions.

• Mean of multiple events formed at each position to reduce
noise contribution.
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Signal Shapes in BEGe 6530
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• Intensity of singles interactions in BEGe reveals crystal
geometry.

• Coincidences recorded at selected points only.



Signal Shapes in BEGe 6530
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• Signal shapes depend on interaction position.

• Faster risetime near to the electrode, particularly in the first
20% of the height.

• This difference is more pronounced in smaller BEGe’s but still
noticable here.



Gamma-ray Interactions

• Full-energy peaks produced by
photoelectric interactions or multiple
Compton scatters.

• Background at low energy mainly due to
Compton scatter of high-energy gamma
rays.



Gamma-ray Interactions

• Low-energy background critical to
sensitivity in a number of applications:

• Lake sediment dating with 46.5 keV
gamma from 210Pb.

• Identification of Uranium decay products
in presence of background from fission
fragments 137Cs and 60Co.



Testing PSA in BEGe 6530

• Can we gate on the risetime to supress low energy interactions
far from the surface?
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Testing PSA in BEGe 6530

• Can we gate on the risetime to supress low energy interactions
far from the surface?
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Testing PSA in BEGe 6530
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• Results of background
rejection modest with this
very large BEGe.

• Wide range of charge drift
times for surface interactions
limit performance.

• Simulations suggest better
results will be obtained for
smaller detectors.

• Tests on 2020 and 2825
BEGe’s underway.



SAGe Characterisation
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• As with BEGe, singles intensity used to determine crystal
geometry and orientation.



SAGe Characterisation
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• Trigger time difference between Ge and BGO used to align
very slow rising pulses.



SAGe Simulations
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• Field in detector calculated using finite difference approach.
• Charge then tracked through field using mobility

parameterisation from Characterization of large volume HPGe
detectors. Part I: Electron and hole mobility parameterization,
Bruyneel Et Al, NIM A, 2006.



SAGe Simulations
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• Simulated
signals much
faster than
experiment
when drifting
through weak
field region.

• Same mobility
parameterisa-
tion works well
for coaxial
detectors e.g.
AGATA



SAGe Simulations
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• Impurity
gradient crucial
in determining
field in these
detectors.

• Depletion bias
provides check
on
manufacturer’s
quoted
impurity
concentrations.

• Temperature
dependance of
mobility likely
playing a role.



SAGe Simulations
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• Currently
optimising
simulation to
match correct
drift times.

• We can’t
explain the
discrepency
without
reducing the
value of
<100> hole
mobility.



Conclusions

• SAGe and BEGe detectors characterised at Liverpool.

• Data being used to inform simulation development for
long-drift-time HPGe detectors.

• Modest results performing fully digital Compton background
rejection on BEGe 6530.

• Measurements underway to exploit same techniques on
smaller BEGe’s.
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