Monolithic pixel development in TowerJazz 180nm CMOS for the outer pixel layers in the ATLAS experiment

The 11th International Conference on Position Sensitive Detectors Milton Keynes, UK 05/09/2017

<u>I. Berdalovic</u>^a, R. Bates^c, C. Buttar^c, R. Cardella^a, N. Egidos Plaja^a, T. Hemperek^b, B. Hiti^d, J. W. Van Hoorne^a, T. Kugathasan^a, I. Mandic^d, D. Maneuski^c, C. A. Marin Tobon^a, L. Musa^a, K. Moustakas^b, H. Pernegger^a, P. Riedler^a, C. Riegel^a, D. Schaefer^a, E. J. Schioppa^a, A. Sharma^a, W. Snoeys^a, C. Solans Sanchez^a, T. Wang^b, N. Wermes^b

E-mail: ivan.berdalovic@cern.ch

a. CERN Experimental Physics Department, CH-121 Geneve 23, Switzerland b. Physikalisches Institut, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany c. SUPA School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, United Kingdom d. Institute Jozef Stefan, SI-1000 Ljubljana, Slovenia

Outline

- Introduction
- Monolithic active pixel sensor characterisation
 - The TowerJazz Investigator chip
 - Charge collection measurements
 - Irradiation results
 - Beam test results
- Design of large-scale monolithic demonstrators
 - The "MALTA" chip
 - The "TJ-Monopix" chip
- Summary

Pixel detectors

- The first measurement layers in ATLAS (closest to the particle collision point)
- Used to reconstruct charged particle tracks

- Used in the majority of presently installed systems
- Sensor and readout circuitry on separate chips (can be optimised separately)
- Fast, radiation hard, but complex assembly

- Sensor and readout integrated into the same chip
- Potentially better powerperformance ratio and strong impact on material budget
- High resolution, low cost, recent progress in radiation hardness

3

Radiation hard monolithic sensors

- Target: development of CMOS sensors for potential use in ITK pixel layers
- Requirements:
 - fast time resolution (< 25 ns bunch crossing time)
 - short dead time because of high particle rates (< ~1 μs)
 - low power consumption
 - tolerance to ionising and non-ionising radiation

 \downarrow

charge collection by drift rather than diffusion

	STAR	ALICE- LHC	ILC	ATLAS-HL-LHC	
				Outer	Inner
Required Time Res. [ns]	110	20 000	350	25	
Particle Rate [kHz/mm ²]	4	10	250	1000	10 000
Fluence [n _{eq} /cm²]	> 10 ¹²	>10 ¹³	10 ¹²	10 ¹⁵	10 ¹⁶
lon. Dose [Mrad]	0.2	0.7	0.4	50	1000

Sensor technology

- TowerJazz 180nm CMOS imaging process
- High resistivity (> $1k\Omega$ cm) p-type epitaxial layer (25 µm thick)
- Deep PWELL shielding NWELL allowing in-pixel PMOS

 $\frac{1}{2}$ – better analog performance

- lower power consumption
- Reverse bias to further reduce input capacitance and increase depletion volume (still difficult to deplete under deep PWELL)

Modified process

- Novel modified process developed in collaboration with the foundry
- Adding a planar n-type layer significantly improves depletion under deep PWELL
- Increased depletion volume \rightarrow fast charge collection by drift

W. Snoeys et al. DOI 10.1016/j.nima.2017.07.046 \downarrow

better time resolution reduced probability of charge trapping (radiation hardness)

- Possibility to fully deplete sensing volume
- No significant circuit or layout changes required

The TowerJazz Investigator chip

- Developed by ALICE as test chip for the ITS upgrade development
- 134 pixel sub-matrices of different designs (electrode size, PWELL spacing)
- Each sub-matrix contains 8x8 pixels surrounded by dummies

Investigator-1 layout

• Possibility of simultaneously measuring the analog signals on 64 pixels

Mini-matrix

DOI 10.1016/j.nima.2016.03.074

Monolithic pixel development in TowerJazz 180nm – I. Berdalovic – PSD 11

7

Charge collection measurements

• Edge-TCT: used to study charge collection uniformity within the pixel

- Tests on Investigator chip done in IJS, Ljubljana on two structures:
 - 20x20 µm² pixel size
 - 50x50 µm² pixel size

Charge collection measurements

- e-TCT measurements show depletion of epi layer even after 10¹⁵ n_{eq}/cm² at -6V
- Signal collection after 10¹⁵ n_{eq}/cm² irradiation also directly under deep PWELL

with process modification the full pixel is depleted!

Irradiation results

Investigator irradiated up to 10¹⁵ n_{eq}/cm² and 1 Mrad in several steps

Beam test results

• Unirradiated sensor efficiency 98.5% \pm 0.5% (stat.) \pm 0.5% (sys.) (50x50 μ m²)

Irradiated sensor also shows uniform efficiency across 25x25 µm² pixel

Design of large-scale demonstrators

 Measurement results show improved radiation hardness for sensors manufactured using the modified process

> Design of two full-scale demonstrators to match ATLAS specifications for outer pixel layers

- The "MALTA" chip
 - Analog front-end based on a previous design for the ALICE experiment
 - Novel asynchronous readout architecture to reduce digital power consumption and increase hit rate capability in the matrix

- The "TJ-Monopix" chip
 - Front-end similar to the "MALTA" chip
 - Uses the well-established column drain readout architecture (experience from LF-Monopix design)

The "MALTA" chip

• "MALTA" (Monolithic from ALICE To ATLAS) chip under development at CERN

Analog front-end

• Based on the front-end of the ALPIDE chip (previously developed for the upgrade of the ALICE experiment)

 Improvement for fast timing (< 25 ns) and hit rate capability by increasing current consumption (250-500 nA/pixel, < 1 µW/pixel)

Front-end timing optimisation

Noise and mismatch

Noise and transistor mismatch cause a variation in the charge threshold of the ۲ front-end (S-curve)

Digital readout architecture

- Front-end output injected into doublecolumn digital readout logic
- Hits are stored using in-pixel flip-flops and transmitted asynchronously over high-speed buses to the end-ofcolumn logic (digital periphery)
- No clock distribution over the active matrix – reduces power consumption!
- Double-column divided into groups of 2x8 pixels ("red" and "blue")
- Buses shared by all groups of the same colour in the double-column
- Group number encoded on 5-bit group address bus

Digital end-of-column logic

- At the periphery, signals ۲ of red and blue groups are merged together
- Simultaneous signals on • two buses require additional arbitration logic (blue signal is given priority, red is delayed)
- Merging is repeated for all the double-columns and then continued until all outputs are merged into one parallel bus

x256 double-columns

The "TJ-Monopix" chip

- Produced on the same reticle as the "MALTA" chip
- "MALTA" front-end modified to provide ToT information
- Well established column-drain architecture:
 - Time stamp distributed in pixel array
 - Hit information stored in the pixel
 - Hit read out following a priority scan

Summary

- The possibility of using a monolithic pixel sensor for the outer layers of the ATLAS experiment was investigated using the TowerJazz Investigator test chip
- Measurement results of sensors produced using a novel modified process, which combines high Q/C with radiation tolerance, show good performance and high efficiency even after irradiation
- This has opened the way for the design of two large-scale demonstrators with different readout architectures

