Thin and Edgeless silicon planar pixel sensors

For ATLAS inner tracker upgrade

A. Ducourthial¹, A. Bagolini², M. Bomben¹, M. Boscardin², L. Bosisio³, G. Calderini¹, L. D'Eramo¹, G-F. Dalla Betta², G. Darbo², G. Giacomini^{2,4}, I. Luise¹, G. Marchiori¹, M. Meschini², A. Messineo², S. Ronchin², N. Zorzi²

- 1 Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE), 75005 Paris, France
- 2 Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), I-38123 Povo di Trento (TN), Italy
- 3 Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
- 4 Brookhaven National Laboratory, Instrumentation Division 535B, Upton, NY USA

Table of contents

- 1. Introduction: ATLAS Inner Tracker Upgrade
- 2. LPNHE-FBK-INFN sensors

- 3. Testbeam results: Active edge sensors, not irradiated
- 4. Testbeam results: Thin irradiated sensors

Upgrade

Introduction: ATLAS Inner Tracker

ATLAS Tracker

- ➤ 3 subdetectors: Pixels, SCT, TRT
- Pixel detectors composed of now 4 barrel layers (IBL)
- \blacktriangleright η acceptance: -2.5 < η < 2.5
- Excellent performances in terms of spatial resolution and hit efficiency, but
- Expected fluence at the end of lifetime: 1 and 5 $\times 10^{15} n_{eq}/cm^2$

 $\eta \equiv -\ln\left[\tan\left(\frac{\theta}{2}\right)\right]$

ATLAS Upgrade

ATLAS data taking phase in HL LHC conditions (start in 2026):

- ▶ Peak luminosity of $L_{inst} \simeq 7.5 \times 10^{34} cm^{-2} s^{-1}$
- ▶ 200 inelastic pp collisons per bunch crossing
- ▶ By the end of 2037, ATLAS will collect 3000 fb^{-1} (4000 fb^{-1} ?)
- ▶ Fluence inner tracker $2 \times 10^{16} n_{eq}/cm^2$ (4 times IBL fluence)

ATLAS Inner Tracker Upgrade (ITK) Layout

pixels (red) - strips (blue)

Pixel options:

- ▶ 3D silicon pixels
- Planar silicon pixels
- CMOS pixels

Pixel TDR due for end of 2017:

- * All silicon tracker
- * 10 m^2 of pixels more than 600 Millions electronic channels
- * 200 m^2 of strips

ITK Pixels Challenges

ITK major challenges:

- ▶ Radiation hardness: Retain a 97% efficiency with a fluence up to $2 \times 10^{16} n_{eq} / cm^2$ for innermost layer
 - * Thinner sensors to fight charge trapping
 - * Rad harder 3D sensors for innermost layer (cf Cinzia's talk)
 - * LPNHE 130 μm thick sensors irradiated at 1 \times 10¹⁶ n_{eq}/cm^2 , our R&D focuses on planar sensors for intermediate layers
- ► High event rate and pile up compliance:
 - * Granularity (50 μ m imes 50 μ m or 25 μ m imes 100 μ m pitch instead of 250 μ m imes 50 μ m)
 - * New chip RD53 50 imes 50 μm to deal with high data rate at HL-LHC
- Increase the geometrical acceptance
 - * Instrument at high eta, cf Inclined layout
 - * Reduction of dead area ⇒LPNHE Active edge sensors

LPNHE-FBK-INFN sensors

PRODUCTION 1 & 2

Active edge sensors

- N-on-P devices
- Pixel pitch: 50 μm
 by 250 μm *
- Temporary metal for biasing in initial sensor QA before bonding to FE

► Thickness: 200 μm

Active edge:

- Deep Reactive Ion Etching
- ▶ 100 μm from last pixel; 0, 2 GRs

Development of Edgeless n-on-p Planar Pixel Sensors for future ATLAS Upgrades, M Bomben et al, Nucl. Instr. and Meth. A 2013:712:41-47 _

Thin sensors

- 6 inches SiSi wafers
- ▶ N-on-P devices
- Pixel pitch: 50 μm
 by 250 μm *
- Thickness: 100 and 130 μm

- Passivation against discharge: BCB
- 2 sensors
 irradiated up to a fluence of
 1.1 × 10¹⁶n_{ea}/cm²

Production 3: Thin and Active edge sensors

FBK production: 4 FEI4b sensors

- ▶ SiSi wafers
- ▶ N-on-P devices
- \blacktriangleright thickness: 100 μm
- \blacktriangleright 2 FEI4 50 μ m pixel to trench, 0 GRs
- \blacktriangleright 1 FEI4 75 μ m pixel to trench, 0 GRs
- \blacktriangleright 1 FEI4 75 μ m pixel to trench, 1 GR
- Segmented trench design

Also: 5 RD53 compatible sensors

Status: Bump bonding at IZM (Berlin)

Testbeam results: Active edge sensors, not irradiated

GLOBAL EFFICIENCY & IN PIXEL EFFICIENCY

Global Efficiency: 98 % when biased at 40 V (depleted at 20V)

In Pixel efficiency:

Temporary metal line to bias sensors before bump bonding: No permanent bias structures results in **uniform hit efficiency**

EDGE EFFICIENCY

⇒ GRs don't impact too severely on the hit-efficiency

EDGE EFFICIENCY - COMPARISON WITH TCAD SIMULATION

- ▶ Charge is not collected and reemitted by GRs apart from few μm below the GR area
- ▶ Simulation TCAD supports the hypothesis
- Uninstrumented area is no longer dead!

sensors

Testbeam results: Thin irradiated

Intermezzo: Radiation damage in silicon

Radiation (NIEL) creates new energy states (deep defects) in the gap:

- Charge trapping
- ▶ Type inversion

Macroscopic effects:

- ∴ Charge Collection efficiency
- 2.

 ∠ Leakage Current
- 3. *→* Depletion Voltage

Charge collection at $3 \times 10^{15} n_{eq}/cm^2$

- $V_{bias} = 600V$ $V_{bias} = 100V$
- Thr = 1ke
- Gain: 6ke@6ToT

- ▶ Charge trapping: decrease of charge collection
- ▶ Irradiation of 130 μm thick sensor reduce the signal by 3 ToT units: $MPV_{irr} \simeq 6 \; MPV_{unirr} \simeq 9$
- At $3 \times 10^{15} n_{eq}/cm^2$, charge collection is reduced by $\simeq 33\%$ compared to unirradiated sensors.

Charge and bias voltage at $1 \times 10^{16} n_{eq}/cm^2$

- ► Evolution of the depletion with voltage for highly irradiated sensor: $1 \times 10^{16} n_{eq} / cm^2$
- ▶ At 600V, MPV \simeq 8.5 so induced charge close to 4000 e. Degradation of charge collection efficiency of \simeq 50% compared to unirradiated sensor

Sensor efficiency vs bias voltage and fluence up to

 $1 \times 10^{16} n_{eq}/cm^2$

- At $1 \times 10^{16} n_{eq}/cm^2$ and 600V, efficiency is $96.32 \pm 0.5\%$, quite close to the 97% ATLAS requirement
- ▶ At $3 \times 10^{15} n_{eq}/cm^2$ and 600 V, efficiency reaches 97%

NB: Low threshold gives better results

CONCLUSIONS

- ► Thanks to the Active edge technology, the edge region is efficient above 97% up to 70μm from last pixel
- ► Thin sensors highly efficient after irradiation: $\simeq 96.5\%$ at $1 \times 10^{16} n_{eq}/cm^2$ and higher than 97 % at $3 \times 10^{15} n_{eq}/cm^2$
- ► Thanks to **temporary metal** no permanent biasing structures, so **very homogeneous efficiency** in the whole pixel cell

To be tested in beam in autumn 2017:

Combination of thin and active edge sensors (production 3) soon to be delivered.

Acknowledgements

For Productions 2 and 3:

This work was supported by the Italian National Institute for Nuclear Physics (INFN), Projects ATLAS, CMS, RD-FASE2 (CSN1)

 Principal investigators: Marco Meschini, Gian Franco Dalla Betta, Maurizio Boscardin, Giovanni Darbo, Gabriele Giacomini, Sabina Ronchin, Alberto Messineo

and by AIDA-2020 Project EU-INFRA Proposal no. 654168.

The authors want to thank the CERN IRRAD team for helping with the irradiation of the detectors.

