Diamond Detector Technology: Status and Perspectives Lukas Bäni, on behalf of the RD42 collaboration Position Sensitive Detectors 11 2017, Milton Keynes #### The RD42 Collaboration #### The 2017 RD42 Collaboration A. Alexopoulos³, M. Artuso²², F. Bachmair²⁶, L. Bäni²⁶, M. Bartosik³, J. Beacham¹⁵, H. Beck²⁵, V. Bellini², V. Belyaev¹⁴, B. Bentele²¹, E. Berdermann⁷, P. Bergonzo¹³. A. Bes³⁰, J-M. Brom⁹, M. Bruzzi⁵, M. Cerv³, G. Chiodini²⁹, D. Chren²⁰, V. Cindro¹¹, G. Claus⁹, J. Collot³⁰, J. Cumalat²¹, A. Dabrowski³, R. D'Alessandro⁵, D. Dauvergne³⁰, W. de Boer¹², C. Dorfer²⁶, M. Dunser³, V. Eremin⁸, R. Eusebi²⁷ G. Forcolin²⁴, J. Forneris¹⁷, H. Frais-Kölbl⁴, L. Gallin-Martel³⁰, M.L. Gallin-Martel³⁰, K.K. Gan¹⁵, M. Gastal³, C. Giroletti¹⁹, M. Goffe⁹, J. Goldstein¹⁹, A. Golubev¹⁰, A. Gorišek¹¹, E. Grigoriev¹⁰, J. Grosse-Knetter²⁵, A. Grummer²³, B. Gui¹⁵, M. Guthoff³, I. Haughton²⁴, B. Hiti¹¹, D. Hits²⁶, M. Hoeferkamp²³, T. Hofmann³, J. Hosslet⁹, J-Y. Hostachy³⁰, F. Hügging¹, C. Hutton¹⁹, H. Jansen³, J. Janssen¹. H. Kagan^{15,♦}, K. Kanxheri³¹, G. Kasieczka²⁶, R. Kass¹⁵ F. Kassel¹², M. Kis⁷, V. Konovalov¹⁵, G. Kramberger¹¹, S. Kuleshov¹⁰, A. Lacoste³⁰, S. Lagomarsino⁵, A. Lo Giudice¹⁷, E. Lukosi²⁸, C. Maazouzi⁹, I. Mandic¹¹. C. Mathieu⁹, M. Menichelli³¹, M. Mikuž¹¹, A. Morozzi³¹ J. Moss³², R. Mountain²², S. Murphy²⁴, M. Muškinja¹¹. A. Oh²⁴, P. Olivero¹⁷, D. Passeri³¹, H. Pernegger³, R. Perrino²⁹, F. Picollo¹⁷, M. Pomorski¹³, R. Potenza² A. Quadt²⁵, A. Re¹⁷, M. Reichmann²⁶, G. Riley²⁸, S. Roe³, D. Sanz²⁶, M. Scaringella⁵, D. Schaefer³, C. Schmidt⁷ S. Schnetzer¹⁶, S. Sciortino⁵, A. Scorzoni³¹, S. Seidel²³, L. Servoli³¹, S. Smith¹⁵, B. Sopko²⁰, V. Sopko²⁰, S. Spagnolo²⁹, S. Spanier²⁸, K. Stenson²¹, R. Stone¹⁶ C. Sutera², B. Tannenwald¹⁵, A. Taylor²³, M. Traeger⁷ D. Tromson¹³, W. Trischuk^{18,\dighta}, C. Tuve², L. Uplegger⁶ J. Velthuis¹⁹, N. Venturi¹⁸, E. Vittone¹⁷, S. Wagner²¹ R. Wallny²⁶, J.C. Wang²², J. Weingarten²⁵, C. Weiss³ T. Wengler³, N. Wermes¹, M. Yamouni³⁰, M. Zavrtanik¹¹ ¹ Universität Bonn, Bonn, Germany ² INFN/University of Catania, Catania, Italy ³ CERN, Geneva, Switzerland ⁴ FWT, Wiener Neustadt, Austria ⁵ INFN/University of Florence, Florence, Italy ⁶ FNAL, Batavia, USA ⁷ GSI, Darmstadt, Germany 8 Ioffe Institute, St. Petersburg, Russia ⁹ IPHC, Strasbourg, France 10 ITEP, Moscow, Russia ¹¹ Jožef Stefan Institute, Ljubljana, Slovenia 12 Universität Karlsruhe, Karlsruhe, Germany ¹³ CEA-LIST Technologies Avancees, Saclay, France ¹⁴ MEPHI Institute, Moscow, Russia ¹⁵ The Ohio State University, Columbus, OH, USA ¹⁶ Rutgers University, Piscataway, NJ, USA ¹⁷ University of Torino, Torino, Italy ¹⁸ University of Toronto, Toronto, ON, Canada 19 University of Bristol, Bristol, UK ²⁰ Czech Technical Univ., Prague, Czech Republic ²¹ University of Colorado, Boulder, CO, USA ²² Syracuse University, Syracuse, NY, USA ²³ University of New Mexico, Albuquerque, NM, USA ²⁴ University of Manchester, Manchester, UK ²⁵ Universität Goettingen, Goettingen, Germany ²⁶ ETH Zürich, Zürich, Switzerland ²⁷ Texas A&M, College Park Station, TX, USA ²⁸ University of Tennessee, Knoxville, TN, USA ²⁹ INFN-Lecce, Lecce, Italy 30 LPSC-Grenoble, Grenoble, Switzerland 31 INFN-Perugia, Perugia, Italy 32 Cal State Univ - Sacramento, USA #### **Outline** - Diamond as a sensor material - Radiation tolerance - 3D detectors - Rate studies #### **Motivation** - Innermost layers of LHC experiments are exposed to a large particle fluence - At the **High Luminosity LHC** a fluence of $2 \times 10^{16} \, n_{eq}/cm^2$ is expected for the inner most layers of the tracker - New radiation tolerant concepts are needed #### Diamond as a Sensor Material - Distinct properties interesting for HEP applications - Large band gap - High thermal conductivity - Low dielectric constant - Large displacement energy - Disadvantages - Large band gap - Diamonds grown with chemical vapour deposition (CVD) - Single-crystalline CVD (sCVD) available size: ~5×5 mm² - Polycrystalline CVD (pCVD) - → low leakage current and noise - → good heat spread - → low capacitance, low noise - → high radiation tolerance → ~1/2 signal of Si Single-crystalline CVD (courtesy of E6) Poly-crystalline CVD (courtesy of II-IV) #### Diamond as a Particle Sensor - Diamond detectors are operated as ionisation chambers - Metalisation on both sides - Pad - Strip - Pixel - Readout with low noise electronics Poly-crystalline CVD ## **Testbeam Experimental Setup** - Characterisation of devices with - 120 GeV π /p beam at CERN - 260 MeV π^+ beam at PSI - Use telescope prediction for unbiased measurements - Measurements include - Signal response as a function of the predicted track position - Spatial resolution ## **Analysis Strategy** - Measure the signal response as a function of predicted position - → Direct measurement of charge collection distance (CCD) = average distance e-h pairs move apart under the influence of an electric field - Convert CCD into mean free path (MFP), assuming same MFP for electrons and holes $CCD = \sum_{i=1}^{n} \lambda_i \left(1 - \frac{\lambda_i}{d} \left(1 - \exp\left(-\frac{d}{\lambda_i} \right) \right) \right)$ - Damage equation $$n = n_0 + k'\phi$$ $$\frac{1}{\lambda} = \frac{1}{\lambda_0} + k\phi$$ Fit in 1/λ vs φ space n Number of traps n_0 initial traps φ fluence λMFP λ_{\cap} initial MFP #### **Radiation Tolerance** - Irradiations with different particle species and energies - 800 MeV protons at LANSCE, Los Alamos, USA - 70 MeV protons at CYRIC, Tohoku, Japan - Fast neutrons (>100 keV) at Jožef Stefan Institute, Ljubljana, Slovenia - Fit each sample in $1/\lambda$ vs ϕ space - \rightarrow linear fit, k = slope - Average slopes ## Summary of Radiation Tolerance Study **Combined Damage Curve** - Obtained radiation damage constants are compared to 24 GeV protons - Combined damage curve - Shift pCVD sample by $$\varphi_0 = \frac{1}{\lambda_0 k}$$ Scale fluence by relative k $$\phi_{\rm eq.} = \frac{k_i}{k_{24\,{\rm GeV\ protons}}} \times \phi_i$$ | Particle species | Relative k | |------------------|-------------| | 24 GeV protons | 1 | | 800 MeV protons | 1.85 ± 0.13 | | 70 MeV protons | 2.5 ± 0.4 | | Fast neutrons | 4.5 ± 0.5 | Signal Shape Analysis - Preliminary - Study the shape of the pulse height distribution after irradiation - Define the ratio f = FWHM / MP as figure of merit - 800 MeV proton irradiated - pCVD diamond samples - Decrease of FWHM/MP - sCVD diamond - Smaller initial relative width (~0.3) - Increase towards the same value as the pCVD samples 3D Diamond Detectors ### Concept - MFP gets limited after large irradiations - Use 3D geometry - Place bias and readout electrodes inside diamond bulk - Drift length at the some order as MFP - Same thickness → same amount of induced charge ## **Multi-region Device** - Electrode columns drilled with a femtosecond laser → converts diamond into a resistive mixture of carbon phases - pCVD diamond with 3 different regions - Strip detector for comparison @ 500 V - 3D phantom @ 60 V $150 \times 150 \,\mu\text{m}^2$ cell size - 3D detector @ 60 V $150 \times 150 \,\mu\text{m}^2$ cell size 3D detector 3D phantom Strip ## Signal Response - Average pulse height maps - Verify working device - Phantom detector: less signal since columns are not connected - 3D detector: ~9 broken readout columns - Observed signals (preliminary) - Strip: $6900 \text{ e} \rightarrow \text{CCD} = 192 \,\mu\text{m}$ - 3D: $13500 \text{ e} \rightarrow \text{CCD}^* = 350-375 \,\mu\text{m}$ * equivalent CCD to observe same charge in planar device - Collected 75 % charge with pCVD diamond for the first time! ## Single 3D Device - pCVD diamond with one single 3D metalisation - Smaller cell size: 100 × 100 µm² - More cells: 99 → 1188 - Improved column production efficiency: 92 % → 99 % - Collected 85 % of charge ## **Rate Studies** ## Setup - Characterisation in 260 MeV π^+ beam at PSI with fluxes from $\mathcal{O}(1 \text{ kHz/cm}^2)$ to $\mathcal{O}(10 \text{ MHz/cm}^2)$ - Telescope with 4 pixel planes - pCVD diamond with pad electrodes - Unirradited - Neutron irradiated $(5 \times 10^{14} / \text{cm}^2)$ #### **Rate Studies** - No rate dependence observed in pCVD diamond up to 10 MHz/cm² - Further test after several neutron fluences up to 2×10^{16} /cm² #### Conclusion - Studied radiation damage up to fluences relevant for tracker application in HL-LHC experiments - Ongoing analysis of signal shape of CVD diamond after irradiation - Verified working 3D detector with pCVD diamond material - Tested particle rate independence of CVD diamond detectors up to 10 MHz/cm²