

Development of Ultra-Fast Silicon Detectors for 4D Tracking

N. Cartiglia¹, G. F. Dalla Betta², F. Ficorella³, M. Boscardin³, G. Paternoster³, L. Pancheri², F. Cenna^{1,4}, M. Ferrero¹, V. Sola^{1,4}, R. Arcidiacono^{1,5}, M. Obertino^{1,4}, V. Monaco^{1,4}, R. Bellan^{1,4}, <u>A. Staiano¹</u>, S. Durando^{1,4}

¹Istituto Nazionale di Fisica Nucleare, Torino, Italy

²Universita' di Trento, Trento, Italy ³Fondazione Bruno Kessler, Trento, Italy ⁴Universita' di Torino, Torino, Italy

⁵Universita' Piemonte Orientale, Torino, Italy

Timing at High Luminosity HEP Experiments

Time can be considered a 4th dimension coordinate in particle tracking in High Luminosity HEP experiments

Silicon Detectors provide excellent spatial resolution ($^{\sim}10\mu m$), aim is to determine the timing of the passage of the particle with resolution $^{\sim}10ps$ (current best performance in NA62, $300x300\mu m$ pixel Gigatracker with 150ps)

How to make use the timing information

- 1. Improve reconstruction by adding time information to each track point
- 2. Determine the correct vertex track assignment

IN HL-LHC

- 150-200 vertices / beam crossing
- $<\Delta z_{\text{vertices}}> = 500 \mu \text{m}$
- <t_{vertex}>_{RMS}= \sim 200ps
- a vertex separation resolution of 250-300μm → 10-15% overlapping 2 events

Event loss = Luminosity loss

4D = add 30ps timing information

~x5 pileup (@ PU=200) reduction in terms of associated tracks

Silicon Detector Time Resolution

Ultra Fast Silicon Detectors

use **Low Gain Avalanche Detectors layout** (Gain ~5-20 in p+/n++ junction with E~300kV/cm) and optimize design in order to

- use high E to saturate and uniform v_{drift}
- high resistivity to have uniform E
- use high density segmentation
- low gain → better uniformity
- gain \rightarrow thin detectors (~50 μ m) to have low signal t_{rise}

Traditional Si detectors

Ultra Fast Si detectors

Gain **very sensitive** to doping concentration (few %)

Characteristics of FE Electronics

Time Resolution: Beam Test Measurements

3 **CNM** 45μm thin detectors, 1.7mm² single pad + 1 SiPM on quartz for timing crosscheck

The time resolution of a single UFSD is measured to decrease with increased gain M like M^{-0.36} (from **34ps**@200V to **28ps**@230V)

Time Resolution: Measurements

Consistent with simulation and CNM Beam Test Data (previous plot)

Radiation Tolerance

LGAD radiation tolerance studied within the CERN RD50 collaboration Radiation fluences requested to operate at HL-LHC $^{\sim}5~10^{15}$ particles/cm², radiation doses of 150Mrad (primarily due to Non-Ionizing Energy Loss)

Effects:

1. Same effects of standard n-p Si detectors: increase of Leakage Current (decrease T), increase of V_{BD} and V_{FD} , due to increase of doping concentration. Creation of trapping centers (minimize the effect going to thin sensors (!))

2. In LGAD:

- 1. Further increase of leakage current (and power) due to gain layer: go thin, keep gain low
- Gain loss due to gain layer acceptor removal. Boron atoms are displaced and become interstitial, thus not contributing to the doping profile: increase V_{bias}, change acceptor (add Carbon to decrease interstitial phase space, and replace Boron with Gallium)

Radiation Tolerance

Measurements from $50\mu m$ thin HPK detectors, fully consistent with simulation expectations: gain decreases with increasing fluences and it is partially recovered by increasing V_{Bias}

Excellent agreement of signal simulation (WF2) with data.

High fluence increase dV/dt and shorten the signal. This makes preferable CFD, provided it is tuned vs fluence, over ToT time measurement.

Comparison measured - WF2 pulse of HPK 50D 50micron thick sensors

Radiation Tolerance

Increasing the fluence:

- 1. Break Down Voltage increases (from 300V at pre-irradiation to 750V at highest tested fluence
- 2. Gain at V_{BD} decreases
- 3. For a CFD fraction optimized for each fluence and bias, the time resolution increases from 20 ps pre-irradiation to 40 ps at 1 10^{15} n/cm² up to 50 ps at 6 10^{15} n/cm²
- 4. Even if the gain at large fluences decreases, the increase of the rise time in the pulse height still compensates and guarantees good time resolution
- 5. Reducing the temperature from -20C to -30C improves the timing resolution by 10% at large fluences where the gain is reduced to below 3.
- 6. The "headroom" between the breakdown voltage and an operating condition at lower bias causes a reduced timing resolution of a few ps.

Sensor currently under test: new FBK production

FBK 50-micron production (II FBK Run)
Very successful, good gain and overall behavior
Gain layer: **Boron, Gallium, Boron+Carbon, Gallium+Carbon**

CNM 75-micron production

Medical Physics Timing Det.

Sensor currently under test: new FBK production, Ga, B and C

UFSD in HEP Experiments: CMS Totem Precision Proton Spectrometer

CT-PPS Project

- The CMS TOTEM Precision Proton Spectrometer (CT-PPS) aims at measuring the surviving scattered protons on both sides of CMS in standard LHC running conditions, using LHC magnets to measure the proton momentum
- > Tracking and timing detectors at ~ 220 m from CMS inside Roman Pots to be able to move as close as possible to the circulating beams

> CT-PPS started data taking with the baseline detector configuration in May 2017 and detector commissioning is ongoing

- ▷ 3D Silicon Pixels & Strips for tracking
- Diamonds + UFSD for timing

CT-PPS UFSD Timing Detectors

1 UFSD Plane installed (first prototype on HEP experiment!)

- 8 0,5x6mm² and 4 1x3mm² pads
- Expected time resolution 35ps/plane
- FE electronics on TOTEM custom hybrid
- RO with NINO chip and HPTDC
- Timing signal to be compared with a parallel scCVD Diamond detector

Installation completed in April 2017 and system currently taking data

Proposal for a Forward Timing Layer for CMS HL-LHC

ATLAS and CMS are discussing the possibility to equip the experiments with a large area Timing Layer made of UFSD.

In CMS would cover the region $1.45 < \eta < 3$

- keep occupancy < 1%
- low pad surface area (low leakage current to allow increased V_{Bias} , tipically <3mm²)
- Low Gain to keep Low noise (Gain<20)
- minimize dead area
- sustain fluxes up to ~10¹⁵ particles/cm²
- total detector area ~10m²

- Good results on timing capabilities (~30ps from beam test)
- Good results after NIEL at 6 10¹⁵ neq/cm², levels to be considered in HL-LHC. New implants (Ga, C) currently under test (last FBK run)
- Good agreement with simulations (WF2 and TCAD)
- Technological interest, many manufacturers (CNM (Spain), FBK (Italy), HPK (Japan), Micron Semiconductor (UK))

Thank you for your attention!

This work was supported by the United States Department of Energy, grant DE-FG02-04ER41286. Part of this work has been financed by the European Union's Horizon 2020 Research and Innovation funding program, under Grant Agreement no. 654168 (AIDA-2020) and Grant Agreement no. 669529 (ERC UFSD669529), and by the Italian Ministero degli Affari Esteri and INFN Gruppo V.

Signal rise-time is given by electrons drift time

Charge formation and multiplication takes a considerable fraction of time.

Gain Holes dominate the signal, whilst Gain Electrons current contribution is negligible.

Weightfield2 Simulation

Possible Choices of Preamplifier

Time Resolution Optimization

As expected, the jitter contribution follows the inverse of the signal derivative: at the start and at the end of the pulse the contribution decreases, as the pulse shape is less steep. The effect of gain is rather predictable: higher gains yield to lower jitter. The Landau noise term, on the other hand, is rather insensitive to the gain value, but shows a clear dependence upon the CFD settings: it is minimized using the minimum possible threshold.

