

Design and characterization of pixelated needle probe for molecular neuroimaging on awake and freely moving rats

<u>J. Heymes¹, L. Ammour², M. Bautista³, G. Bertolone¹, A. Dorokhov¹, S. Fieux⁴,</u> F. Gensolen³, M. Goffe¹, F. Guezzi-Messaoud¹, C. Hu-Guo¹, M. Kachel¹, F. Lefebvre², F. Pain², P. Pangaud³, L. Pinot², P. Gisquet⁵, P. Laniece², C. Morel³, M.-A. Verdier², M. Winter¹, L. Zimmer⁴, J. Baudot¹ Contact: julian.heymes@iphc.cnrs.fr

¹Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France ²IMNC UMR 8165, Université Paris-Sud, Université Paris Diderot, CNRS/IN2P3, Université Paris Saclay, 91405 Orsay, France ³Aix Marseille Université, CNRS/IN2P3, CPPM, Marseille, France ⁴LNRC, CNRS/INSERM, Univ. Lyon 1, Lyon, France ⁵NeuroPSI CNRS/INSB, Univ. Paris Sud, Orsay, France

I. MAPSSIC PROJECT

Motivation

- Neuroimaging on awake [1] and freely moving animals
- Localization of β + radiotracer clusters close to the pixelated sensor
- → Implantation of a pixelated needle-shaped sensor in the brain

Requirements

- Sensor
 - Small size Limitation of the impact on the brain tissue
 - \succ Immunity to the 511 keV γ -rays background
- o System
 - Compact with wireless data transmission
 - Autonomous

Limitation of the discomfort that may alter normal behavior

Thinned probes to 200 μ m still sensitive to γ -rays and brittle

- Dissipated power < 1 mW

IV. SINGLE SENSOR VALIDATION

II. IMIC SENSOR DESIGN

Size: 610 x 12000 µm² (pixelated needle-shaped sensor)

Sensitive area: 16 x 128 pixels → 480 x 6400 µm²

Technology: 0.18 μ m CMOS process on 18 μ m thick high resistivity (> 1 k Ω ·cm) epitaxial layer READOUT TIME (128 µs)

2047

IT STORED

WAITING TIME

INTEGRATION TIME

time

Strategy for low power dissipation

- \circ Very low readout rate (~ Hz)
- Information of the hit stored in the pixel between two readouts

Pixel design

- Detection efficiency \rightarrow Small pixel pitch: 30 x 50 μ m²
- Based on a front-end amplifier of ALPIDE (ALice Plxel DEtector) [5]
 - Low power (55 nW/pixel)
 - Asynchronous operation
 - Memorization (on 1 bit) of the information of the hit until the readout
 Synchronization

Laboratory tests

- \circ Power consumption of the whole sensor: 161 μ W
- Integrated DACs fully operating

Measurements with β - source (⁹⁰Sr)

- Integration time between 10 ms and 1 s
- Room temperature operation
- \circ β source activity regulated with various shield thickness

Measurements with β + emitter (¹⁸F)

 \circ ¹⁸**F**: β+ and γ emitter in aqueous solution (100 MBq max. allowed in the laboratory)

Detection performances

- For long integration time (~1 s)
 - Dark Count Rate ~ 1.15 hits/matrix/s
- For short integration time (< 20 ms) Ο
 - Max. activity ~ 80 000 hits/matrix/s
 - Dark Count Rate ~ 2-3 hits/matrix/s
- For expected activities (<< 100 hits/matrix/s) No hit losses with longer integration times (~1 s)

Readout

- Column parallel rolling shutter readout
- \circ Complete matrix readout in 128 µs
- Typical bandwidth: few kbits/s

Chip configuration: SPI protocol to steer on-chip DACs → Polarization of the front-end

III. BACK-TO-BACK INTEGRATION

Concept

- Two sensors back to back
 - Robustness for manipulation and implantation Ο
 - Large two-sided sensitive area Ο
- Easy connection between the sensors and the backpack containing the microcontroller with wireless transmission and the battery

Realization

- Diced and thinned sensors glued back-to-back
 - Successful tests with individual sensors thinned to 150, 200, and 250 µm Ο
 - Total volume of the needle: 610 x 12000 x 500 µm³ 0

Produced at the Cyrcé cyclotron (IPHC)

Sensitivity to y-rays

- ¹⁸F solution with low activity close to the sensor: majority of positrons measured
- ¹⁸F solution with high activity (~100 MBq) ~ 20 cm away from the sensor (head-bladder distance) : γ-rays only
- The y-ray contribution increases the mean #clusters/frame from positrons by 3.5 % only
- The beta+gamma measurement with the two sources at a time is 300x higher than for gamma only

\rightarrow IMIC is immune to 511 keV γ -rays

¹⁸F decay

- \circ 6 hours = 3 periods
 - Starting activity ~ 24 MBq
 - Ending activity ~ 2.5 MBq
- Integration time: 500 µs Ο
- Pile-up for high activity (counting limited to 1 bit) Ο
- Exponential decay measured at the expected operation activity

V. CONCLUSIONS & PERSPECTIVES

• **Requirements reached:** functional CMOS monolithic active pixel sensor

- \circ Low power: 161 μ W
- Compatible to the awaited activities of the radiotracers
- \circ Immune to the 511 keV y-rays

Outlooks

- Tests of the double-sided probe
- System integration (backpack)
- Coating with biocompatible polymer (Parylene) Ο
- In-situ experiments
- Tests and characterization of IMIC-LF: DMAPS version of IMIC (CPPM)

REFERENCES

[1] Y. Gao et al. (2017) Time to wake up: Studying neurovascular coupling and brain-wide circuit function in the un-anesthetized animal. NeuroImage 153 : 382–398. [2] J. Godart et al. (2010) PIXSIC: A Pixellated Beta-Microprobe for Kinetic Measurements of Radiotracers on Awake and Freely Moving Small Animals. IEEE Trans. Nucl. Sci. 57 (3): 998-1007. [3] L. Balasse et al. (2015) PIXSIC, a pixelated β+-sensitive probe for radiopharmacological investigations in rat brain: binding studies with 18F-MPPF. Mol. Imaging Biol. 17 (2): 163-167. [4] L. Balasse et al. (2015) PIXSIC: a wireless intracerebral radiosensitive probe in freely moving rats. Mol. Imaging 14 (43): 484-489. [5] M. Mager. (2016) ALPIDE, the Monolithic Active Pixel Sensor for the ALICE ITS upgrade, Nucl. Instr. Meth. Phys. Res. A 824: 434-438.