Beam Gas Jet Fluorescence Monitor

Ray Veness

With thanks to:

E.Barrios, N.Chritin, R.Jones, R.Kersavan, P.Magagnin, G.Schneider, H.Schmickler @CERN

E.Martin, V.Tzoganis, C.Welsch, H.Zhang @Cockcroft Institute

P.Forck, S.Udrea @GSI

Contents

- Introduction
- Measurement principles and equipment
- Results from the Cockcroft Institute
- Gas dynamics studies
- Recent progress
- Remaining challenges and objectives

The Challenge for HL-LHC

- Co-linear beam profile measurements for HL-LHC
 - Proposed devices for <u>active halo control with a hollow e-lens</u> and <u>long range</u> <u>beam-beam compensation</u> both include a high intensity e- beam (upto 10 Amps) close to, or coaxial with the high energy LHC p+ beam.
 - These will need a non-invasive instrument for optimising the transverse profile (overlap) of one beam relative to the other
 - As the e- beam will need to be contained by a (superconducting) solenoid, this overlap monitor will need to operate in a strong solenoidal field, either in the main solenoid (2~4 T) or in the fringe field
 - The device would need to be installed in the LHC, integrated in some way in the SC solenoid

Summary of Gas Jet Collaboration

- Why?
 - Only viable non-invasive technique identified for the characterisation of high current electron beams in the presence of high intensity and energy proton beams
 - Important for development of electron lens components for hollow e-lens and LRBB compensator
- Objectives

Luminosity

- Demonstrate production of a high density neutral gas sheet
- Demonstrate detection using luminescence
- Produce a system capable of equipping an e-lens test stand
- Design, produce and test a prototype system that could be installed in the LHC
- Collaboration partners
 - HL-LHC WP13 and UK collaboration (WP3 Diagnostics)
 - Agreement in place for 50/50 funding of HL-LHC activities
 - Task 2 : Gas Jet Based Beam Monitor for HL-LHC
 - University of Liverpool & Cockcroft Institute
 - Design, Production and Test of a neutral gas sheet production device
 - GSI collaboration agreement

High • Design, production and test of a luminescence detection system for a neutral gas sheet monitor

Gas Sheet Monitor

- Generate thin atom gas curtain,
- Ionize atoms with primary particle beam,
- Extract ions via electric field,
- Monitor on MCP, P screen.

Y. Hashimoto et al., Proc. Part. Acc. Conf., Chicago (2001)

Beam Induced Fluorescence Features @ GSI

- Based upon the detection of photons emitted by residual or injected (low pressure) gas molecules
- · Little influence on the beam
- Single pulse observation possible; down to \approx 1 μs time resolution
- High resolution, e.g. 0.2 mm/pixel, can be easily matched to application
- Commercial image intensifier available
- Compact installation, e.g. 25 cm for both planes

BIF Profile Monitor

3

Setup #1 at Cockcroft

Using Beam-Gas Ionisation

Setup @ Cockcroft Institute

V. Tzoganis, et al., APL **104** 204104 (2014)

V. Tzoganis, et al., VACUUM (2015)

Apply 3D movable ion gauge to scan through jet

Identify Mach disk location

H. Zhang, et al., Phys. Rev. AB (2016), submitted

Benefit from Jet and BIF !

- Generate light in collision between gas jet and beam
- Detect photons and measure profile
- <u>R&D challenges</u>:
 - Monitor integration (location, cryostat,...)
 - Optimum location, e.g. do we have to measure inside the solenoid?
 - Gas condensation, extraction and choice of species,...
 - Achievable resolution of optics and anticipated signal levels
- We are optimizing this idea towards HLLHC application with CERN and GSI.
- 2 monitors planned for 2017 and 2019.

- Gas molecules are excited by the beam and emit a photon when returning to the ground state.
- Emission wavelength is determined by the gas species
- The relaxation time is typically 10s or 100s of ns.

Gas Dynamics Studies

Simulation issues

- Pressure range spans 11 orders of magnitude
 - Gas nozzle inlet at 10 Bar, Interaction chamber at ~10⁻⁷ mbar
 - Transition from viscous to molecular flow regimes mean the same physical models cannot be used over the whole flow
- Geometric details also range over 4 to 5 orders of magnitude
 - Nozzles from ~30 μ m with transport over ~ 1 m
 - Tends to require numerical models with large numbers of elements, so computationally demanding

CFD simulation with 1st skimmer and $p_{NC} = 0.88 [Pa]$ everywhere

• Velocity distribution and streamlines

Molflow+ Model:

3. Molflow+ model (simplified);

Closer view into the first skimmer area; the little red dot is the inlet surface simulating the viscous-flow distribution as calculated by P. Magagnin;

Molflow+ Model:

3. Molflow+ model (simplified);

Ray-tracing with Molflow: **two baffles** have been placed in front of the "dump" area turbo pump, to reduce backscattering from it;

Molflow+ Model:

3. Molflow+ model (simplified);

- Close-up view of the textured surfaces;
- Right-to-Left: entrance to nozzle (red profile on inset), base of nozzle (blue), and interaction region (green); The horizontal axis on inset plots is longest side of textured rectangles;

Courtesy: Roberto Kersevan Red: 4x0.4 mm² nozzle inlet; Blue and Green: 20.4 x 46.0 mm²;

Molecular Distributions

3. Molflow+ model (simplified);

Courtesy: Roberto Kersevan

Recent Progress

Beam Gas Curtain: Current status

- Vacuum chambers :
 - Drawings ready (LHCBGCAA0002 / 0004 / 0005 / 0006 / 0007 / 0010)

Integration time

1000s

4000s

8000s

H.Zhang, 16/12/16

Y line scan

a	82.42	
b	244.1	1.41 mm
с	6.45	
d	8.084	
R2	0.9321	

hao.zhang@cockcroft.ac.uk

Next Steps

Main challenges for HL-LHC

- Performance challenges
 - Integration time
 - Precision achievable in the gas and electro-magnetic environment
- Instrument challenges for HL-LHC
 - Integration into/around the SC solenoid
 - Vacuum issues (pressure, gas species N2 vs. Ne)
 - Instrument size and maintainability

Project research goals in 2017

- Cockcroft
 - Assemble and commission the #2 test stand with new, higher intensity e-gun
 - Commission instrumentation (Mass spec...)
 - Demonstrate results with BIF then start to quantify performance
 - Simulation work: Beam-gas simulations
- GSI (upto 30/6/17)
 - Deliver optical system for BIF to Cockcroft and participate in commissioning
 - Deliver report on BIF with different gas species (in particular Ne)
- CERN
 - Complete mechanical design of #2 test stand (skimmer production and alignment)
 - Integration studies with the SC solenoid and HL-LHC
 - Continue studies of gas dynamics (high pressure-low pressure)
 - Longer-term studies targeted at FCC (gas jet scanner)

Backup Material

Beam Induced Fluorescence (BIF)

- Measures light from rest gas, excited by beam
- Challenges:
 - Very low cross sections
 - Isotropic light emission
 - Rest gas pressure requirements

Understanding the Jet

Simulations using the CST and WARP codes

Ionization Cross Sections

 Can be exotic, e.g. single ionization of helium by antiproton impact

Property of Property OF Aris, France

Y. Hashimoto et al., Proc. Part. Acc. Conf., Chicago (2001)

Experimental Data

<u>eje</u>

External field and image broadening

— X_{rms}

----- Y_{rms}

1.6

Real beam size (mm)

1.8

IVERSITY OF Dutient HLLHG Meeting, Paris, France

Mechanic Design (DRAFT)

Also considered: Gas Jet Wire ?

- Similar idea to laser wire
- Challenge mm focus

Fresnel Zone Plate

