

INTERNATIONAL CONFERENCE ON ELECTROMAGNETIC ISOTOPE SEPARATORS AND RELATED TOPICS

CERN GENEVA / SWITZERLAND / 16 - 21 SEPTEMBER 2018

199192

High-intensity highly charged ion beam production by superconducting ECR ion sources at IMP

Hongwei Zhao

(zhaohw@impcas.ac.cn)

Institute of Modern Physics (IMP), CAS, 730000, Lanzhou, China

- Background and introduction
- High intensity HCI beam production by SECRAL and impact to HIRFL facility.
 3rd Gen. ECRIS
- Future development: IMP 45 GHz FECR.
 4th Gen. ECRIS
- Summary and conclusion

High power heavy ion accelerator requests intense HCI

Accelerator facility for rare isotope beam production requests high intensity primary ion beams, which actually very much depends on performance of the front-end ion source

MSU FRIB U³³⁺+U³⁴⁺ 13 pµA/ CW

RIKEN RIBF U³⁵⁺ 500 eµA/ CW

SPIRAL2 Ar¹²⁺ 1 emA/ CW

CW-intense highly charged ion(HCI) beams requested by RIB accelerator complex

High power RIB accelerator requests intense HCI beams

Pulsed-intense highly charged ion (HCI) beams requested by RIB accelerator complex

GSI @FAIR U²⁸⁺ > 10emA pulsed

IMP HIAF U³⁵⁺ 50 pµA pulsed

Requirements of ion source for those high energy (GeV/u) high current heavy ion accelerators

 $E \sim Q^2$ for cyclotrons $E \sim Q$ for linac

Higher power Simpler injection mode

Developing intense highly charged ion source is both performance-effective and cost-effective.

100 MeV/u SC heavy ion linac

	²³⁸ U ³⁴⁺	²³⁸ U ⁴⁶⁺	238U22+	
Injection E (MeV/u)	1.3	1.3	1.3	
Output E (MeV/u)	100	100	100	
Design I _{max} (emA)	1.0	1.0	1.0	
SC cavity It is very much worthy of developing highly charged ion source				
SC cavities				
Solenoids	78	65	55	
CRM Reduced		11	16	
Total length (m)	288	225	197	
Budget reduced		>70 M\$ (MP not included)	>100 M\$ (MP not included)	

Highly charged ECR ion source

HCI ion source: EBIS;LIS;ECRIS. Only ECRIS for HCI DC and pulsed beam

ECRIS: Electron Resonance Cyclotron Ion Source

Higher Q and higher I \Longrightarrow Higher $n_e \tau_i \Longrightarrow$ Higher $\omega_{rf} \Longrightarrow$ Higher B That is why we need to build SC-ECRIS, and also good device to study ECRIS physics.

Development of highly charged ECR ion source

TRA

Past, present and future

High intensity HCI sources: ECRIS

High performance superconducting ECRIS

		Parameters	Unit	State of the Art ECRISs
		ω _{rf}	GHz	24~28
	SECRAL	P _{rf}	kW	10.0
		B _{mirror}	т	3.5~4.0/2.2~2.8
		B _r	т	1.8~2.0
		Chamber ID	mm	Ø100~150
	SECRAL, SECRAL-II@IMP	Mirror Length	mm	400~500
VENUS@LBNL		HV	kV	30
	SCECRIS@RIKEN	 ♦ V ♦ ~ ♦ H 	ery hi ms p ligh b	gh charge state oulse to dc beam eam intensity

High intensity HCI beam production by SECRAL and impact to HIRFL facility. 3rd Gen. ECRIS

- Future development: IMP 45 GHz FECR. 4th Gen. ECRIS
- Summary and conclusion

IMP existing heavy ion facility HIRFL

IMP is the biggest nuclear physics research center in China for heavy ion basic-science and nuclear technology application

Ion sources for SFC cyclotron

SECRAL ECR ion source

Fully NbTi superconducting magnet ECR source

SECRAL was built in 2001-2005. Beam operation to HIRFL since 2007

Conventional magnet structure of ECR ion source

Sextupole-in-Solenoid

C. Lyneis@presentation ICIS2009

SERSE/LNS, VENUS/LBNL, SuSi/MSU, SC-ECR/RIKEN,....

SECRAL innovative magnet structure

SECRAL superconducting ECR ion source

- SECRAL first beam:2005;
- Beam delivery for HIRFL accelerator since 2007
- 3000-4000 hours beam operation each year in the past 10 years.

New microwave coupling system at SECRAL

- Ø32 mm TE₀₁ –traditional 28GHz
- Ø20 mm HE₁₁
- Ø20 mmTE₀₁ shows the best results due to better coupling.
 Intensity increased by 20-50%

SECRAL beam current increasing with technologies

TRAF

SECRAL II and Test Bench Layout

SECRAL II was built for HIRFL linac new injector

Record beam intensities produced by SECRAL and SECRAL II

SECRAL I-II beam intensities and compared to LBNL VENUS

HCI beam production by 45 GHz ECR plasma at SECRAL II

World first beam test for HCI production with 45 GHz ECR plasma

28+45+18 GHz three frequency heating

	VENUS	SECRAL	SECRAL-II
_	28+18 GHz	24+18 GHz	45+28+18 GHz
Ion	(eµA)	(eµA)	(еµА)
¹²⁹ Xe ³⁸⁺	26	22.6	53
Xe ⁴²⁺	6		17
Xe ⁴⁴⁺	2	1	3.9
Xe ⁴⁵⁺	0.88	0.1	1.3

H.W. Zhao, et.al. RSI, (2018)

Intense beam stability from SECRAL

²⁰⁹Bi³¹⁺ 329 eµA more than 2 hours stability test operation at 3.7 kW

Intense beam stability from SECRAL II

SECRAL-II ⁸⁶Kr²⁶⁺ 120 euA

SECRAL beam emittance

Emittance vs. beam intensity

RF: 24 GHz, P_{rf}= 1.0 kW, HV= 20 kV, Io= 4.8 emA, Bi³¹⁺= 115 eµA

RF: 24 GHz+18 GHz, P_{rf}= 3.4 kW+ 0.3 kW, HV= 23 kV, Io= 10 emA, Bi³¹⁺= 330 eμA

T. Nakagawa talk at ECRIS2018

SECRAL operation status at HIRFL

Intense heavy ion beams

- Intense highly charged ion beams
- ~35,000 hours beam time up to June, 2018
- Demonstrate its reliability
- No any other 3rd generation SC ECRIS in the world has ever run such long-time beams

- SFC beam intensities for heavy ions such as Ni, Kr, Xe,Bi, U, increased by a factor 10
- SSC beam intensities for heavy ions such as Ni, Kr, Xe,Bi, increased by a factor >50
- CSR is able to run those heavy ion beams such as Ni. Xe Bi, U with SFC as an injector.

SECRAL impact to HIRFL performance of beam energy

TEAP

- High intensity HCI beam production by SECRAL and impact to HIRFL facility.
 3rd Gen. ECRIS
- Future development: IMP 45 GHz FECR. 4th Gen. ECRIS

IMP future heavy ion facility HIAF

Bring-N: 0.8 GeV/A, 3×10¹⁰ppp

HIAF: 2018-2024 Budget: 1.5+1.1 B CNY, approved Site: Huizhou, Guangdong

Higher microwave frequency 40-60 GHz is the most straight forward path to achieve high beam intensity for HCI ECRIS.

IMP ECR ion source development

The world first 45 GHz ECRIS----FECR

TIMP

FECR: first Fourth generation ECR ion source

FECR key parameters

Microwave	45 GHz/20 kW	
Magnet conductor	Nb ₃ Sn	
Axial fields (T)	6.5/1.0/3.5	
Sextupole field (T)	3.8@r=75 mm	
Maximum field (T)	11.8 T	
Maximum stress (MPa)	150	
Magnet bore (mm)	>Ø160	
Stored energy (MJ)	1.6	
Extraction (kV)	50	
Typical beam	1.0 emA U ³⁵⁺	

Beams and intensities expected from FECR

129 Xe ³⁰⁺	>1000 µA
¹²⁹ Xe ⁴⁵⁺	> 50 µA
²⁰⁹ Bi ³¹⁺	>1000 µA
²⁰⁹ Bi ⁵⁵⁺	> 50 µA
²³⁸ U ³⁵⁺	>1000 µA
²³⁸ U ⁴¹⁺	> 200 µA
238U56+	> 30 µA

45 GHz FECR ion source

FECR Nb₃Sn magnet mechanical structure

This Nb₃Sn magnet is being built by a Chinese company without collaboration with ATAP/LBNL. DOE did not approve such collaboration.

Coil fabrication

- Nb₃Sn single wire winding (sextupole coil)
- Curing with precise configuration
- Large number of current leads
- Insulation
- Integration and assembling
 - Precise fabrication and assembling
 - Tolerance control
- Quench protection
 - Quench detection and protection
- Dynamic heat load from 45 GHz ECR plasma
 - Heat load may > 2 W/kW

Prototype of FECR Nb₃Sn magnet

Prototype magnet is being fabricated by a company in China

Status of FECR Nb₃Sn magnet prototype

Prototyping Nb₃Sn sextupole coil

800 A no quench

Summary and conclusion

- Accelerator facility for rare isotope beam production requests high intensity primary ion beam which actually very much depends on performance of the front-end ion source.
- SC ECRIS with higher microwave frequency is the most straight forward path to achieve high beam intensity for HCI.
- SECRAL&SECRAL II, the world best performance highly charged ECR ion source,, have produced many record beam intensities, such as O⁶⁺ 6.7 emA ; Ar¹¹⁻¹⁴⁺,Kr¹⁸⁺ Xe²⁶⁺ > 1 emA ; Xe⁴²⁺. Bi⁵⁰⁺, U⁵⁰⁺ > 10 eµA.
- SECRAL has delivered HCI beams for HIRFL accelerator for almost 10 years, which has demonstrated its good long-term reliability and stability, and has greatly enhanced HIRFL performance in terms of beam intensity and energy.
- SC ECRIS, such as SECRAL &SECRAL II, may provide some new research opportunities for rare isotope beam physics because of demonstrated such level of ion source performance.
- Future development of SC ECRIS is the 4th generation with microwave heating frequency 40-60 GHz. IMP is developing the world first 4th Gen. ECRIS—45 GHz FECR, which may get beam by July 2020.

Thanks for your attention 谢谢!

Option of FECR magnet Nb₃Sn superconductor

Wire $\sqrt{}$

Pros:

- No extra cabling process
- Lower power supply currents (<1000 A)
- Simpler HTS current lead solution
- HV platform feasible
- Cost efficient

Cons:

- Sextupole coil winding more difficult ×
- Quench protection issues ×
 - ~1.6 MJ stored energy
 - Higher qench voltage
- Superconducting joints
- Higher failure risk ×

OST M-Grade Nb₃Sn wire

Cable

Pros:

- Successful examples of Accelerator magnets
- Good reliability
- Easier quench protection sys.

Cons:

- Not feasible for HV platform ×
 - 100~300 kV
 - 10 kA PSs on Platform
- Cryogenic solution×
- Higher cost
- Extra Cabling R&D

(Becomosed)

Rutherford Cable

FECR optimized Magnetic Design

Coil and conductor operation parameters

	Nominal engineering current density	Nominal wire current	Nominal peak field	Load factor
	J _e (A/mm²)	I _e (A)	В _{реак-п} (Т)	(%)
Sext.	320	654	11.3	75.9
Inj.	365	692	11.8	78.2
Mid.	-200	380	5.0	36.5
Ext.	330	626	9.7	67.3

Assuming packing factor of 65% (sextupole) and 70% (solenoid) Wire: OST M-Grade Nb3Sn Ø1.43 mm with 0.13 mm S-glass included

Conductor performance, stability

