Development of an innovative ISOL Device for the production of short-lived Neutron-Deficient Isotopes.

Venkateswarlu KUCHI.
Ph.D. student.

EMIS conference 2018,
CERN, Geneva, Switzerland,
September 17, 2018.
Motivation

- To produce new beams at GANIL competitive to other main facilities in the world.
- The upgrade of SPIRAL1 facility.
 - 12C to 238U (at 95 MeV/A and 8 MeV/A respectively) on thick graphite target.
 - 12C to 238U, whole intensity and energy ranges on thin targets.
 - 12C @ 2.10^{13} pps, 95 MeV/A on thick targets (from C to Nb).

Reaction Mechanisms
- Fragmentation.
- Transfer.
- Fusion-evaporation.

Two regions were identified:
- low mass elements.
- neutron-deficient short-lived isotopes.

Focused Isotopes
- 74Rb (64.8 ms)
- 114Cs (570 ms)
How to optimize the ion production rate in an ISOL Device?

RIB Intensity

Possible optimizations:
- Production rate
- Target release
- Effusion process
- Ionization process

RIB intensity = In-target production rate * $\epsilon_{\text{Atom-to-Ion Transformation}}$
Design of the TISS for 74Rb (64.8 ms) production

To design the TISS, we have observed the following specifications:

1. Maximum in-target production
2. Selectivity of the processes
3. Fast release from the catcher
4. Fast effusion
5. Fast ionization immediately after the target release
6. Simple to cope with operation constraints.

V. Kuchi

EMIS conference September 19, 2018
Optimization of the 74Rb in-target production rate

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Primary beam + target</th>
<th>Primary beam Energy (MeV/A)</th>
<th>Cross-section (mb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fusion-evaporation</td>
<td>20Ne + 58Ni</td>
<td>5.5</td>
<td>6.10^{-2}</td>
</tr>
<tr>
<td>Fragmentation</td>
<td>12C + 93Nb</td>
<td>95</td>
<td>4.10^{-5}</td>
</tr>
<tr>
<td>Spallation</td>
<td>p + 93Nb</td>
<td>200</td>
<td>9.10^{-5}</td>
</tr>
</tbody>
</table>
Selective In-Target Reaction mechanism

Proton induced spallations + ISOL

Selective nuclear reaction process

Fusion-evaporation reaction

$^{20}\text{Ne} + ^{58}\text{Ni} @ 5.5 \text{ MeV/A}$

$>100\text{mb}$

$<1\text{mb}$

ISOL: P (1.4 GeV) + U
Optimization of the release process from the catcher

Optimum grain size for target material made of powder

- Element 35Ar ($\tau_{1/2} = 1.79$ s)
- Density = 1.8 gr.cm$^{-3}$
- Diffusion coefficient = 4×10^{-9} cm2/s
- Thickness = 3 mm

V. Kuchi
Optimization of the Effusion process form the target to ion source

Effusion process: \[T_{eff} = t_f + N_{hits} \times t_s \]

- \(t_f + N_{hits} \) : depends on size of the device.
- Sticking time \(t_s \): depends on the chemical reaction between the incoming element and surface.
- According to Frenkel equation: \[t = t_o \cdot e^{-\frac{E_{des}}{k_B.T}} \]

Electric field effect on effusion time

<table>
<thead>
<tr>
<th></th>
<th>Effusion time</th>
<th>Efficiency</th>
<th>RIB Intensity (pps)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Without E field</td>
<td>With E field</td>
<td></td>
</tr>
<tr>
<td>$^{74}\text{Rb}^+$ (64.8 ms)</td>
<td>120 ms</td>
<td>12 ms</td>
<td>19% \rightarrow 85%</td>
</tr>
<tr>
<td>$^{114}\text{Cs}^+$ (570 ms)</td>
<td>1.2 s</td>
<td>27 ms</td>
<td>22% \rightarrow 96%</td>
</tr>
</tbody>
</table>

V. Kuchi

EMIS conference September 19, 2018
Off-line test Results: characterization of thermal constraints

The system sustained nominal temperature (1600 K) for 3 weeks

The obtained potential difference is 6.7 V for 240 A

V. Kuchi
Conclusions

1. The TISS has been optimized for the production of short-lived neutron-deficient alkali isotopes (74Rb (64.8 ms)).

1. The primary off-line test is satisfying regarding the electric field and temperature expected. Temperature of the surrounding of the Ni target must be limited.

1. Next tests:
 - Re-test the thermal behavior after design improvement.
 - TISS response time.
 - On-line production test at ALTO/IPNO by next year.

Prospectives

1. The system could be directly used for the production of 114Cs (0.57 s) by changing the primary beam.

2. The combination of a fast release cavity to other sources could be easily applied to produce other exotic isotopes:

 - Ex: $^{112-118}$Xe (cavity + ECRIS)
 - Ex: $^{100-107}$Sn (cavity+ FEBIAD IS)
Thank you for your attention
Thickness of the target

Radius/2

V. Kuchi

EMIS conference September 19, 2018
ANSYS simulations

Primary beam power: 308 W
A current of 300 A.

Thickness: 3 µm of Nickel, 200 µm for catcher
Electrical resistivity: 310 µΩ.cm, 60 µΩ.cm
thermal conductivity of 55 W.m⁻¹.K⁻¹ and 80 W.m⁻¹.K⁻¹
Emissivity: 0.45 and 0.2

Thermal simulations:
Temperature is below: 1420 °C
The temperature is higher at the exit and the catcher → Increases the release efficiency.

Electric field:
Potential difference: 4.2 V for 5 cm
→ Increases in AIT efficiency.

EMIS conference September 19, 2018
Issue in this development

1. TISS is complex that leads to decay losses.
2. The volume of the TISS: 1 cm3.
3. Longer effusion time.
4. Less efficient to deliver short-lived RIBs.

Advantages:

1. Use of fusion-evaporation reaction: Reduced the number of isobaric contaminants. Not as many orders of magnitudes as spallation or fragmentation reactions.
2. For example: 74Rb, a pure beam is possible Using SIS.
Installation

1. The thermo-mechanical behavior of the TISS for 3 weeks:
 - Measurement of temperature on the target and catcher.
 - Potential difference of the TISS.

2. Response time measurement:
 - To estimate the AIT efficiency.