

Development of an innovative ISOL Device for the production of short-lived Neutron-Deficient Isotopes.

Venkateswarlu KUCHI. Ph.D. student.

Contributors : V. Kuchi, P. Jardin, C. Michel, L. Maunoury, M. Dubois, P. Delahaye, O. Bajeat, S. Hormigos, V. Métayer, B. Roussière, J. Guillot.

EMIS conference 2018, CERN, Geneva, Switzerland, September 17, 2018.

Motivation

> To produce new beams at GANIL competitive to other main facilities in the world.

- The upgrade of SPIRAL1 facility.
 - ¹²C to ²³⁸U (at 95 MeV/A and 8 MeV/A respectively) on thick graphite target.
 - \rightarrow ¹²C to ²³⁸U, whole intensity and energy ranges on thin targets.
 - \rightarrow ¹²C @ 2.10¹³ pps, 95 MeV/A on thick targets (from C to Nb).

How to optimize the ion production rate in an ISOL Device?

RIB Intensity

RIB intensity = In-target production rate* $\epsilon_{Atom-to-Ion}$ Transformation

Design of the TISS for ⁷⁴Rb (64.8 ms) production

To design the TISS, we have observed the following specifications:

- 1. Maximum in-target production
- 2. Selectivity of the processes
- 3. Fast release from the catcher
- 4. Fast effusion
- 5. Fast ionization immediately after the target release
- 6. Simple to cope with operation constraints.

Optimization of the ⁷⁴Rb in-target production rate

Reaction	Primary beam+ target	Primary beam Energy (MeV/A)	Cross-section (mb)
Fusion-evaporation	²⁰ Ne + ⁵⁸ Ni	5.5	6.10-2
Fragmentation	¹² C + ⁹³ Nb	95	4.10 ⁻⁵
Spallation	p + ⁹³ Nb	200	9.10 ⁻⁵

Selective nuclear reaction process

Selective In-Target Reaction mechanism

Fusion-evaporation reaction

Optimization of the release process from the catcher

Optimum grain size for target material made of powder

V. Kuchi

Optimization of the Effusion process form the target to ion source

Effusion process :
$$T_{eff} = t_f + N_{hits} * t_s$$

 \succ $t_f + N_{hits}$: depends on size of the device.

Sticking time(t_s): depends on the chemical reaction between the incoming element and surface.

> According to Frenkel equation : $t = t_o \cdot e^{-\left(\frac{E_{des}}{k_B \cdot T}\right)}$

V. Kuchi

V. Kuchi

EMIS conference September 19, 2018

Off-line test Results: characterization of thermal constraints

Temperature (K)

The system sustained nominal temperature (1600 K) for 3 weeks

The obtained potential difference is 6.7 V for 240 A

V. Kuchi

Conclusions

- 1. The TISS has been optimized for the production of short-lived neutrondeficient alkali isotopes (⁷⁴Rb (64.8 ms)).
- The primary off-line test is satisfying regarding the electric field and temperature expected. Temperature of the surrounding of the Ni target must be limited
- 1. Next tests:
 - Re-test the thermal behavior after design improvement
 - TISS response time.
 - On-line production test at ALTO/IPNO by next year.

Prospectives

- 1. The system could be directly used for the production of ¹¹⁴Cs (0.57 s) by changing the primary beam.
- 2. The combination of a fast release cavity to other sources could be easily applied to produce other exotic isotopes:

Ex: ¹¹²⁻¹¹⁸Xe (cavity + ECRIS) Ex: ¹⁰⁰⁻¹⁰⁷Sn (cavity+ FEBIAD IS)

Thank you for your attention

ANSYS simulations

Primary beam power : 308 W A current of 300 A. Thickness: 3 μ m of Nickel, 200 μ m for catcher Electrical resistivity: 310 μ Ω.cm, 60 μ Ω.cm thermal conductivity of 55 W.m⁻¹.K⁻¹ and 80 W.m⁻¹.K⁻¹ Emissivity: 0.45 and 0.2

Thermal simulations:

Temperature is below : 1420 °C

The temperature is higher at the exit and the

catcher \rightarrow Increases the release efficiency.

Electric field:

Potential difference: 4.2 V for 5 cm

→ Increases in AIT efficiency. EMIS conference September 19, 2018

- **Advantages:**
- Use of fusion-evaporation reaction : 1. Reduced the number of isobaric contaminants. Not as many orders of magnitudes as spallation or fragmentation reactions.
- 2. For example: ⁷⁴Rb, a Pure beam is possible Using SIS.

Issue in this development

- TISS is complex that leads to decay losses. 1.
- 2. The volume of the TISS :1 cm³.
- 3. Longer effusion time.
- 4. Less efficient to delivers the short-lived RIBs

²⁰Ne + ⁵⁸Ni @ 5.5 MeV/A

30

28

Installation

- The thermo-mechanical behavior of the TISS for 3 weeks:
 - Measurement of temperature on the target and catcher.
 - Potential difference of the TISS.
- 2. Response time measurement:
 - To estimate the AIT efficiency.

