

New program for measuring masses of silver isotopes near the *N*=82 shell closure with MLLTRAP at ALTO

Enrique Minaya Ramirez Institut de Physique Nucléaire d'Orsay

MLLTRAP project in Germany

MLLTRAP

Penning trap mass spectrometer High-precision mass measurements

Peter G. Thirolf , Christine Weber et al.

2009 \rightarrow Off-line commissioning

V.S. Kolhinen, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 600 (2009) 391

Enrique MINAYA RAMIREZ

MLLTRAP project in France

Accélérateur Linéaire auprès du Tandem d'Orsay

Enrique MINAYA RAMIREZ

MLLTRAP project in France

First operational RIB facility based on photo-fission \rightarrow populating the GDR of ²³⁸U

- 30-kV platform
 mass separator (A/ΔA = 1500)
 10 µA, 50 MeV e- beam
- □ 10¹¹ 4 x10¹¹ fissions/s

MLLTRAP @ ALTO

Enrique MINAYA RAMIREZ

Status of MLLTRAP@ALTO

□ New area rehabilitated
 □ 7 T superconducting magnet with 2 homogenous regions
 → Energized in November 2017

Enrique MINAYA RAMIREZ

Status of MLLTRAP@ALTO

Status of MLLTRAP@ALTO

RFQ cooler and buncher

2r₀ = 14 mm L = 503.5 mm (15 segments)

Transverse emittance : ~ 20 π .mm.mrad @ 1 keV Longitudinal emittance : ~ 10 eV.µs

RFQ COLETTE @ 30 keV

T. Beyer et al., Appl. Phys. B 114 (2014) 129

MLLTRAP setup ALTO

In-trap decay spectroscopy for MLLTRAP

- \circ 'detector trap': α -detectors act as trap electrodes
- customized α detectors were developed and characterized for the cryogenic and UHV-conditions (single-sided Si-strip detector, active area 30x30 mm², 30 strips, α-energy resolution ~ 20 keV)

Advantages:

o Decay experiments with carrier-free particles stored in a Penning trap enable studies on ideal ion samples.

 \circ The improved energy resolution can be exploited for high-resolution α - and electron-decay spectroscopy.

Physics Goals :

- From lifetime measurements of the first excited 2⁺ states in heavy nuclei, nuclear quadrupole moments Q₀ can be derived
- Similar experiments on 0⁺ states allow for a determination of E0 decay strengths r² (E0)
- Shape coexistence of 0⁺ configurations as present in mid-shell regions around magic proton numbers

Enrique MINAYA RAMIREZ

In-trap decay spectroscopy for MLLTRAP

CONSM

MU

P. Chauveau ¹, A. Lopez-Martens ¹, E. Minaya Ramirez ², S. Franchoo ³, K. Hauschild ¹, J. Ljungvall ¹, D. Lunney ¹, P.G. Thirolf ³, C. Weber ³ ¹Centre de Sciences Nucléaires et de Sciences de la Matière ¹Institut de Physique Nucléaire d'Orsay

LIFE-TIME MEASUREMENT

e-decay leads to a reorganization of the electronic shells, often ejecting a few low-energy electrons. For havey even-even mutikations, the probability to populate the 2- state of the daughter mucleus route to be of the daughter mucleus route to be often decay of the 2- state. Thus the distance between those clouds is proportional to the lifetime of this state (3). The small recoil distance is magnified in the fringe field then its azimuthal projection is measured in a position sheresking effect of the method (Fig. 6).

OUTLOOK

Extensive simulations have proven the feasibility of mass and lifetime measurements and new methods are being developed to improve the latter. We are currently preparing to test the in-trap SSDs outside and then inside the magnet. The recoil distance measurement could first be tested offline with a "#a (Tr_e 11.4 g) source e-decaying into "#B (Tr_e 4.4 g) and then into "#bo. Though ALTO does not yet produce e-emittres, a fission-endpoint on line commissioning of the double trap.

ACCONTINUENCE OF A DEVICE OF AN ADDRESS AND RELATED THAT'S EMBELS AND ADDRESS AND ADDRESS AND RELATED THAT'S ADDRESS AND ADDRESS ADDRESS AND ADDRESS

[1] E. Minaya Ramirez, EMIS 2018 talk [2] V. S. Kolhinen et al, NIM A 600 (2009) 391-397 [3] C. Weber et al, JIMS 349-350 (2013) 270-276 [4] P. Chauveau et al, to be published

Weber et al., Int. J. Mass Spectrom. 349-350, 270 (2013) Weber et al., Nucl. Instr. Meth. B 317, 532 (2013)

Conceptual layout

Detector trap

First Trap:

- Gas filed
- For mass-selective cooling
- Built

Enrique MINAYA RAMIREZ

EMIS 2018

Magnetic field calibration

- \rightarrow keep track of magnetic field variations during on-line measurements
- \rightarrow Probe developed by Caylar (company nearby Orsay)
- \rightarrow Measurements performed during the last months

Enrique MINAYA RAMIREZ

High-precision mass measurements at ALTO

ALTO

Letter of Intent for Day 1

PAC session : EXP # (Do not fill in):

March 2017

MLLTRAP experiments High-precision mass measurement of silver isotopes (A=113-129) towards the N=82 shell closure Title: with MLLTRAP at ALTO Is it a follow up experiment? [Yes/No]: If yes, experiment number: No Spokespersons (if several, please use capital letters to indicate the name of the contact person): **Enrique Minava Ramirez** Address of the contact person: Institut de Physique Nucléaire 15 rue Georges Clémenceau 91406 Orsay Other Participants or Organisations: P. Ascher¹, B. Blank¹, P. Chauveau², P. Delahaye³, S. Franchoo⁴, M. Gerbaux¹, S. Grévy¹, J. Ljungvall², A. Lopez-Martens², D. Lunney², M. MacCormick⁴, A. De Roubin⁵, P. Thirolf⁶, J.-C. Thomas³, D. T. Yordanov⁴ ¹Centre d'Etudes Nucléaires de Bordeaux-Gradignan, France ²Centre de Sciences Nucléaires et de Sciences de la Matière, Orsay, France ³Grand Accélérateur National d'Ions Lourds. Caen. France ⁴Institut de Physique Nucléaire d'Orsay, France ⁵University of Jyvaskyla, Department of Physics, Finland ⁶Ludwig-Maximilians-Universität München, Garching, Germanv **Enrique MINAYA RAMIREZ** CERN, 18.09.2018

EMIS 2018

^{113,115,118}Ag : Characterize the performance of the full detection system

 $^{123-125}$ Ag : Sensitivity of MLLTRAP to ions with short half-lives and low statistics 126 Ag and above : evolution of the shell gap at *N*= 82 (PI-ICR)

Masses for nuclear astrophysics studies

Important nuclei from sensitivity studies

Nuclear mass (silver isotopes)				
mass	а	b	С	d
126	0.05	*	0.15	1.28
127	0.11	0.02	0.22	1.68
128	2.22	3.51	1.23	2.89
129	1.92	0.71	1.18	2.90
130	12.54	0.04	0.68	3.03

M.R. Mumpower et al., PPNP86 (2016) 86

Enrique MINAYA RAMIREZ

Thank you for your attention!

Enrique MINAYA RAMIREZ