

Grzegorz Kaminski^{a,f} for ACCULINNA Collaboration

a – Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia b – Institute of Physics, Silesian University in Opava, Czech Republic c – Bogolyubov Laboratory of Theoretical Physics, JINR, Dubna, Russia d – GSI Helmholtzzentrum fur Schwerionenforschung, Darmstadt, Germany e – National Research Center "Kurchatov Institute", Moscow, Russia f – Heavy Ion Laboratory, University of Warsaw, Warsaw, Poland g – Skobel'tsyn Institute of Nuclear Physics, Moscow State University, Russia h – Faculty of Physics, University of Warsaw, Warsaw, Poland i – Fundamental Physics, Chalmers University of Technology, Goteborg, Sweden j- All-Russian Research Institute of Experimental Physics, Sarov, Russia k – Ioffe Physical Technical Institute, St. Petersburg, Russia 1 – NSCL, Michigan State University, East Lansing, Michigan, USA

STATUS OF THE NEW FRAGMENT SEPARATOR ACCULINNA-2 AND FIRST EXPERIMETS

Outline

- Light RIB facility at FLNR (ACC&ACC-2)
- Status of the ACCULINNA-2 project & ACC-2 instrumentation
- First day experiments at ACCULINNA-2

199192

Experiments with OTPC at ACC

CERN GENEVA / SWITZEI

Summary

Main areas of interest at FLNR, JINR

Light & 'Superlinght'

Grzegorz Kaminski, EMIS2018

Scope of activity with ACCULINNA-2

Grzegorz Kaminski, EMIS2018

Competitive light nuclei RIB program at ACCULINNA-2

Correlations and few-body dynamics studies

Layout of the ACCULINNA-2 separator

ACCULINNA-2 project: timeline

2011: Contract signed with Sigma PHI 2016-17: Full commissioning + Beam

2016-2017: Zero-angle spectrometer 2017-2019: RF kicker at F3 2017-2019: New detectors 2018-2020 : Cryogenic target system & tritium target at F5

2019-20: Cyclotron upgrade

¹⁵N (49.7 AMeV) + Be (2 mm)

ToF

_ 🗆 ×

_ 🗆 X

 $I \sim 10^5$ pps @ 100 pnA, $\Delta p/p = 6\%$ (Be wedge 3 mm)

I = 100 pnA, $\Delta p/p = \pm 2\%$ (Be wedge 1 mm) Intensity, Purity, Energy, RIB Amev **1/s** % ¹⁴B $1.2 \cdot 10^4$ 37,7 65 ¹²Be 39,4 $1.5 \cdot 10^4$ 92 ¹¹I i 4.10^{2} 37 67 ⁹Li 33,1 $1.1 \cdot 10^{5}$ 50 ⁸He 35,8 $2.5 \cdot 10^{3}$ 89

- Good agreement with calculations Intensity, Lise++
- Higher intensity compare to ACCULINNA in 15 times!

The zero degree spectrometer

Improvement of RIB purity - RF-kicker

Frequency range (MHz)	15 – 22
Peak voltage (KV)	120
Gap (mm)	70
Width of electrode (mm)	120 min
Length of electrodes (mm)	700
Cylinder diameter (mm)	1200 max
Stem diameter (mm)	120 max
Length of coaxial line (mm)	1830
Distance from A-2 primary	25
target (m)	20

ADJUSTMENT OF RF FREQUENCY - AUTOMATIC REGULATION

RF-kicker phase correction from pickup in primary beam or cyclotron RF signal

Improvement of RIB purity - RF-kicker

First experiments @ ACCULINNA-2

First experiments with ⁶He and ⁹Li on CD₂ target were carried out at ACC-2 in spring:

- elastic and inelastic scattering of ⁶He;
 - d(⁶He,³He)⁵H reaction;
 - $d({}^{9}\text{Li},p){}^{10}\text{Li} \rightarrow n{}^{+9}\text{Li}$ run.

dE [arb. units]

Beam parameters:

- 78% of ⁶He
- Energy
 26 AMeV
- Intensity 10⁵ pps

Experimental data for B. Zalewski Ph.D Thesis (HIL, UW, Warşaw)

Elastic and inelastic scattering of ⁶He (26 AMeV) on ²H:

Preliminary results of elastic and inelastic scattering of ⁶He (26 AMeV) on ²H: $d\sigma/d\Omega$ in a wide angular range (3 runs, $\theta_{CM} \sim 30 \div 110^{\circ}$) with a good statistics

Grzegorz Kaminski, EMIS2018

Moving ahead to the flagship experiment ⁷H - Radiation shield

20Ne: 5%*FePlate + 95%*Target + 85.5%*Magnet, y=(123.8 - 145.9)cm 3500 3000 2500 2000 ×1500 1000 -5500 -5000 -4500 -3000 -2500 -2 Z. cm 500 1000 -4000 -3500 -2000 -1500

Radiation shell around F1-F2 area is completed.

Radiation shell will let to operate at full beam intensity.

Modernized U-400M cyclotron will provide highly intended beams (~ 3 μA on the target in case of $^{15}N)$

Moving ahead to the flagship experiment ⁷H - primary target

- Water cooled beryllium target mounted on magnetic liquid feedthrough with rotation speed up to 1500 rpm
- Heating power up to 2 kW
- Vacuum chamber for fast opening and service
- Integrated system of water cooled diaphragms
- Special port for beam profile monitor (BPM)

First day flagship experiment $d(^{8}He, ^{3}He)^{7}H$

~ 5 ⁷H per day (two telescopes) @ 5*10⁴ ⁸He/s \rightarrow ~140 ⁷H during 4 weeks

Collaborative experiments with Physics Faculty, UW, Warsaw

Optical **T**ime **P**rojection **C**hamber (OTPC) - A new type of modern ionization chamber with an optical readout. Invented at the University of Warsaw by W. Dominik

Spectroscopy of β -delayed charged particle emission

OTPC installed at ACCULINNA

Plans for 2019: β -delayed charged particle emission from ²⁷S and ²⁶P

32 S @ 50 MeV/u + 9 Be \rightarrow ACC \rightarrow 27 S, 26 P

We have too low statistic to get the limit for observation of $\beta 3p$

L. Janiak, N Sokolowska et al., PRC 95 (2017) 034315, N. Sokołowska, Master Thesis, AGH, Krakow 2016

Plans for 2019: β -delayed charged particle emission from ²⁷S and ²⁶P

In 2019 new measurments of β -delayed particle emission from ²⁷S @ **ACCULINNA-2** are planned. Much better statistic of two orders of magnitude is expected (we plane to purify the beam with RF-kicker). Observation of β 3p channel is still an open question.

 32 S @ 50 MeV/u + 9 Be \rightarrow ACC \rightarrow 27 S, 26 P

We have too low statistic to get the limit for observation of $\beta 3p$

L. Janiak, N Sokolowska et al., PRC 95 (2017) 034315, N. Sokołowska, Master Thesis, AGH, Krakow 2016

- ACCULINNA-2 fragment separator commissioned in 2017 is now ready for first-day experiments.
- The intensities obtained in the fragmentation reaction ¹⁵N (49.7 AMeV) + ⁹Be for the RIBs of ¹⁴B, ¹²Be, ^{9,11}Li, ^{6,8}He were on average 15 - 20 times higher in comparison with the values for the old facility.
- In 2018 experimental program with RIBs has been focused on β-delayed exotic decays of ¹¹Be, ⁶He+d scattering and d(⁶He, ³He)⁵H reaction study.
- Method to study low-lying states of ¹⁰Li populated in the reaction $d({}^{9}Li,p){}^{10}Li \rightarrow n+{}^{9}Li$ was tested too (registration of protons, emitted backward in laboratory system, in coincidence with neutrons moving in forward direction).
- The study of the ⁷H and its 4n-decay in the reaction d(⁸He,³He)⁷H is proposed for the fall 2018.
- Further plans: search for β-delayed 3p emission from ²⁷S is considered by means of the OTPC (with RF-kicker), experiments (with RF-kicker and zero angle spectrometer) will be aimed on ²⁶S observation in (*p*,*t*) reaction with ²⁸S.
- We are open for collaboration

Thank you for attention