New control method of slowed-down RI beam and new PID method of secondary-reaction fragments at RIKEN RI beam factory

> Toshiyuki Sumikama RIKEN Nishina center

This work was funded by ImPACT Program of

Council for Science, Technology and Innovation (Cabinet Office, Government of Japan).

T. Sumikama, EMIS 2018

Slowed-down RI beam at RIBF

- Slowed-down RI beam from ~200 MeV/u to 10 or 20 MeV/u
- transfer reaction, deep inelastic reaction, fusion reaction
- First test experiment at RIBF
- \cdot ⁸²Ge ~15 MeV/u
- (Width of E) > (Acc. of ZeroDegree spec.)

OEDO beam line by Michimasa Sep. 18th

Present work

- Control method of slowed-down RI beam (⁹³Zr or ¹⁰⁷Pd)
 - Energy tuning after energy loss with thick degrader (⁹³Zr 20 MeV/u beam)
 - Narrow distribution (pos., ang., energy) if Yield(available) > Yield(required). Cross section of reaction products for ⁹³Zr + d or p. (a few 10³ pps is required.)
 - Particle Identification of reaction products after secondary-reaction target

- Energy control
 - Example, 174 —> 20 MeV/u (⁹³Zr) Thickness of degrader is close to range: d/R ~ 0.965. Prediction power is not enough. Need degrader to adjust energy (rotating degrader)
 - Measurement of spallation-reaction cross section of LLFP(⁹³Zr or ¹⁰⁷Pd) + p or d reaction
 - Experiment: Particle IDs before and after secondary target
 - Any materials in the straight line behave like a target.
 - Requirement: minimize the materials in the straight line

Sep. 19, 2018

- Energy control
 - Example, 174 —> 20 MeV/u (⁹³Zr) Thickness of degrader is close to range: d/R ~ 0.965. Prediction power is not enough. Need degrader to adjust energy (rotating degrader)
 - Measurement of spallation-reaction cross section of LLFP(⁹³Zr or ¹⁰⁷Pd) + p or d reaction
 - Experiment: Particle IDs before and after secondary target
 - Any materials in the straight line behave like a target.
 - · Requirement: minimize the materials in the straight line
 - Best method: never use the energy-adjusting degrader

Sep. 19, 2018

- Energy control
 - Example, 174 —> 20 MeV/u (⁹³Zr)
 Thickness of degrader is close to range: d/R ~ 0.965, d: thickness, R: range
 - Change momentum after production target slightly(~1%)

- Energy control
 - Example, 174 —> 20 MeV/u (⁹³Zr)
 Thickness of degrader is close to range: d/R ~ 0.965, d: thickness, R: range
 - Change momentum after production target slightly(~1%)
 - Prediction: Relative value is more reliable than absolute one.

Method

Use of relative values of prediction. (E-E₀)/E₀ vs $(B\rho - B\rho_0)/B\rho_0$ @D1

- Energy control
 - Example, 174 —> 20 MeV/u (⁹³Zr)
 Thickness of degrader is close to range: d/R ~ 0.965, d: thickness, R: range
 - Change momentum after production target slightly(~1%)
 - Prediction: Relative value is more reliable than absolute one.

- Energy control
 - Example, 174 —> 20 MeV/u (⁹³Zr)
 Thickness of degrader is close to range: d/R ~ 0.965, d: thickness, R: range
 - Prediction: Relative value is more reliable than absolute one.
 - Change slightly momentum(~1%) after production target

Slowed-down RI beam Production Distribution of position, angle, and energy

- Distribution
 - Effective emittance given by position, angle, and momentum(energy) distribution
 - · Increase by x1/(1 d/R) = 28.6 with $d/R \sim 0.965$
- Measurement of spallation-reaction cross section of LLFP(⁹³Zr or ¹⁰⁷Pd) + p or d reaction
 - Required Yield: a few x 10^3 pps (limited by the trigger condition)
 - Available Yield: ~ 10⁶ pps
- Is it possible to make a narrow distribution if a required yield is less than the available one?

Sep. 19, 2018

- Narrow Energy Distribution
 - Narrow slit setting was combined with:
 - Good momentum resolution (1/3200) on the curved degrader made from the polished 0.5-mm Al plate (@ F5)
 - Mono energetic degrader + small spot size
 - · Position @ F7 depends on $\delta p/p$

For ⁹³Zr 17 MeV/u after CH2 target, Width(FWHM) E: 0.82 MeV/u, δp/p: 2.4% within acc. (6%) of ZeroDegree Spec.

•

Slowed-down RI beam Production Position & angle control

•

X direction Use 2 slits @ F1

Y direction Use defocus beam on F2 slit refocus at F3

•

T. Sumikama, EMIS 2018

Slowed-down RI beam Production Position & angle control

Distribution on secondary target

T. Sumikama, EMIS 2018

Slowed-down RI beam Production Position & angle control

Distribution on secondary target

PID @ ZeroDegree spectrometer

New PID with range Range Determination

· MUSIC

- · P10 gas (1atm)
- · 80 mm per channel
- · electrodes: 4- μ m aluminized Mylar

New PID with range Range Determination

Simple ΔE ratio of MUSIC

- Very good correlation with E (MUSIC)
- Range can be determined much more precisely than the sampling length (8cm/ch).

•

New PID with range **Range Determination**

⁹³Zr 40 MeV/u

Conversion To Range

•

- Conversion Table using ATIMA calc.
 - $\Delta E_{i+1}/\Delta E_i \longrightarrow Range$ •
- $\sigma_{\rm R} = 1.5 \,\rm mm$
- (mm) Several lines -> Z dependence

 $1ch = \Delta E \text{ in } 80 \text{ mm}$

Total 480 mm

Z, A dependence of R-E, and ΔE -E

- d E /dx is same for isotopes at same velocity.
- If E is same, the range of isotopes becomes almost same.

New PID with range Comparison of Z determination

E vs R provides Z with a good resolution.

New PID with Range

Standard method: β - TKE —> A,

Range was measured instead of TKE

•

٠

⁹³Zr

40 MeV/u

New PID with Range

٠

Lower energy capability

Lower pressure to distinguish *R*(⁹³Zr) and *R*(⁹²Zr)

Bragg curve can be easily obtained. —> Good resolution of Range

Applied to OEDO/SHARAQ beam line by Michimasa Sep. 18th

T. Sumikama, EMIS 2018

Collaborators

- T. Sumikama, D.S. Ahn, N. Fukuda, Y. Shimizu, H. Suzuki, H. Takeda,
- K. Yoshida, N. Inabe, H. Wang, N. Chiga, H. Otsu, S. Kubono, (RIKEN)
- S. Kawase, K. Nakano, J. Suwa, Y. Watanabe, (Kyushu Univ.)
- Y. Togano, A. Saito, S. Takeuchi, T. Tomai, A. Hirayama, (Tokyo Tech.)
- M. Matsushita, S. Michimasa, S. Shimoura, (CNS, Univ. Tokyo)
- M. Takechi, K. Chikaato (Niigata Univ.)
- · J. Amano (Rikkyo Univ.)

Summary

- The control method of the slowed-down RI beam was developed.
 - The beam energy was successfully tuned with relative value of calculations.
 - The narrow distribution is technically available if the required yield is lower than the available one.
 - e.g. FWHM width
 - 8.6 mm (X), 9.2 mrad (A), 6.3 mm (Y), 14 mrad (B) for ¹⁰⁷Pd 50 MeV/u 0.82 MeV/u (E) for ⁹³Zr 20 MeV/u
- Particle identification of reaction product
 - Range in MUSIC works well for Z and A determination. Thank you for your attention

This work was funded by ImPACT Program of

Council for Science, Technology and Innovation (Cabinet Office, Government of Japan).

٠