

Resonance ionization schemes for high resolution and high efficiency study of exotic nuclei at the CRIS experiment

Agi Koszorus

EMIS XVIII

CERN Geneva/ Switzerland / 16-21 September 2018

Contents

- Motivation: Need for suitable techniques
- Challenges:
	- High efficiency and high resolution
	- Precision and accuracy
- CRIS: Laser lab
- Results: Selected Resonance Ionization Schemes
- Summery and Outlook

Motivation: Need for suitable techniques

Model independent study of the

- **❖ Nuclear spin**
- Magnetic dipole moment *μ*
- Electric quadrupole moment *Q*
- \div Changes in the mean square charge radii **δ<r²>**

of the ground state and long lived isomeric states of exotic isotopes

High resolution

High efficiency

- \Box The distance between the peaks carries the magnetic moment information
- The centroid (relative to the reference) gives us the changes in the ms in the chain
- Spin assignment: number/ relative intensities / ratio of HF parameters / …

Motivation: Need for new techniques

Model independent study of the

- ◆ Nuclear spin
- \triangleq Magnetic dipole moment *μ*
- Electric quadrupole moment *Q*
- Changes in the mean square charge radii *δ<r²>*

of the ground state and long lived isomeric states of exotic isotopes High resolution – collinear laser spectroscopy High efficiency – In-source RIS

 \rightarrow CRIS

Principle of CRIS

Figure by A. R. Vernon*

Resonantly ionized atoms and Nonresonant background Lowest limit 1 count/h background rate (dark count rate)

Figure by A. R. Vernon*

Resonantly ionized atoms and Nonresonant background

Lowest limit 1 count/h background rate (dark count rate)

Challenges:

High efficiency and high resolution

- Resolution
- Narrow band lasers
- Remove power broadening
- Laser atom related line shape distortion and shifts
- Efficiency = ϵ_{TRANS} ^{*} ϵ_{CEC} ^{*} ϵ_{RIS} ^{*} ϵ_{DET}
	- Particle detection
	- Efficient RIS
	- \cdot 1% \rightarrow 100 ions/s before ISCOOL = 1 count/s signal

isobaric/nonresonant background suppression

- Ultra high vacuum in the interaction region
- Reduction of non-resonant ionization rate
- Suppression of 1:10 \div 10 \div 10 \div ions/s beam = 1 count/s background

Precision and accuracy in case of light systems

• Precision of laser scanning and frequency measurement

Narrow band laser in at CRIS

11 Energy / puise CERN 2018 ²Mikael Reponen Poster 97 V. Sonnenschein Poster 31

Broadband lasers at CRIS

Wavelength meters WSU2: 2 MHz absolute accuracy 4 channel switchbox

WS6: absolute accuracy 600 MHz

Both recorded in the CRIS DAQ, CRISTAL*

Frequency references HeNe (temperature stabilized) DL PRO 780 \rightarrow Toptica diode laser locked to a hyperfine transition in Rb

First High resolution $CRIS - ₈₇Fr$

High resolution resonance ionization spectroscopy RIS:

- \triangleright Chopped cw light (25 mW) + 1064 nm
	- \triangleright Reduce optical pumping
	- \geq 20(1) MHz FWHM
- \triangleright Delayed ionization
	- \triangleright AC Stark effect

Efficiency ~ 1:1000

Isobaric/nonresonant background suppression 1:10⁵

High resolution and highest efficiency – ₂₉Cu

High resolution and efficiency

RIS:

- \triangleright Injection-locked laser and THG (~ 1mW @ 1 kHz)
- $\geqslant 60$ MHz FWHM
- \triangleright Delayed ionization
- \triangleright Autoionizing (AI) state

Efficiency 1:100

Background suppression 1:10⁷

background of 1 count in every 400 s

Background free spectra

₁₅ R. P. de Groote et al., Phys. Rev. C **96**, 041302(R) – Published 4 October 2017 Mikael Reponen Poster 97 _{EMIS XVIII, Geneva CERN 2018} V. Sonnenschein. PhD thesis, University of Jyväskylä, 2015.

Mikael Reponen Poster 97 V. Sonnenschein Poster 31

KU LEUVEN

High resolution and high efficiency– $_{49}$ In

RIS:

- \triangleright Injection-locked laser and THG
	- \geq 60 MHz FWHM (~0.5 mW @ 1kHz rate)
- \triangleright Delayed ionization
- ≥ 1064 nm ionizing step

Efficiency 1:2000

Isobaric/nonresonant background suppression 1:10⁷

- $\geq 10^{-10}$ mbar in the interaction region
- \triangleright High non-resonant background due to
	- \triangleright non resonant 1064 step
	- \triangleright collisional background

Lessons we learned:

Background suppression needs to be improved

- \triangleright High power nonresonant ionization introduced background \rightarrow Use AI when possible
- 1064 nm laser pulse fired before the RIS steps to clean the beam (30% times lower background in In)
- \triangleright Field ionization of Rydberg atoms before the IR (3 times less background in In)
- \triangleright Different mass regions have different contributions to background

Cross section for collisional ionization?

High sensitivity $-$ ₁₉K

RIS:

- \triangleright Chopped cw light + Dye + 1064 nm
- \triangleright Delayed ionization efficiency loss

Efficiency 1:1500

Isobaric/nonresonant background suppression 1**:**10⁷

- \triangleright Rydberg atoms removed \rightarrow 8 times lower background
- \geq 1064 nm related background \rightarrow 2 times lower background
- \triangleright Still, high collisional background rate (stable Cr)

▶ Beta detection

6

Av. counts

Hyperfine structure of ⁵²K obtained by detecting the beta decay of resonantly ionized ⁵²K isotopes

Precision and accuracy

Precision and accuracy

- \triangleright Precision of the wavelength measurement
	- $\geq \sigma = 0.77$ MHz
- \triangleright Consistency of hyperfine parameters
	- \triangleright In good agreement with literature

Comparison of the changes in the ms charge radii obtained at CRIS to literature

Comparison of the hyperfine parameters obtained at CRIS to literature

20 EMIS XVIII, Geneva CERN 2018 Kreim et al, PLB 731 97 (2014) References: F. Touchard et al., Physics Letters B 108, 169 (1982).

Precision and accuracy

 \triangleright AC Stark shift

- \triangleright Asymmetric peaks
- \triangleright Higher efficiency
- \triangleright Consistency of hyperfine parameters
- \triangleright Centroid shifts
	- \triangleright Different for different isotopes
	- \triangleright Increase with laser leaser power

Summary and Outlook

- High resolution and high efficiency achieved at CRIS \rightarrow Weak transition (A ~ 10⁶ 1/s) and delayed ionization
- Background suppression \rightarrow ultra high vacuum 10⁻¹⁰
	- \rightarrow ionization from Rydberg states after the CEC
	- \rightarrow 1064 nm for cleaning

Understanding source of background rates is the key to sensitive measurements

• Laser atom interaction investigated (better understood) \rightarrow delayed ionization solves the problem of line shape distortion

 \rightarrow frequency shifts have to be investigated in light systems

- Precision less than 1 MHz
- Isobaric/nonresonant background suppression still the bottleneck:
	- AI
	- **Field ionization**
	- Decay spectroscopy
	- **Energy filter?**
	- **Electron ion coincidence?**

Thank you for your attention!

The University of Manchester Institut de Physique Nucléaire d'Orsay **CERN** Department of Physics, New York University Institut für Physik, Johannes Gutenberg-Universität Peking University University of Jyvaskyla KU Leuven, Instituut voor Kern- en Stralingsfysica

Our work was supported by ERC Consolidator Grant No.648381; GOA 15/010 from KU Leuven; the FWO Vlaanderen (Belgium) and the European Unions Seventh Framework Programme for Research and Technological Development under Grant Agreement 654002 (ENSAR2). We acknowledge the financial aid from the Ed Schneiderman Fund at New York University. B.K.S. acknowledges financial support from Chinese Academy Science through the PIFI fellowship under the project number 2017VMB0023 and partly by the TDP project of Physical Research Laboratory (PRL), Ahmedabad and the computations were carried out using the Vikram-100 HPC cluster of PRL.We would like to thank the ISOLDE technical group for their support and assistance, and the University of Jyvaskyla for the use of the injection-locked cavity.

24 EMIS XVIII, Geneva CERN 2018**KU LEUVEN**

Motivation: Need for new techniques

- High efficiency: in-source
- High resolution : collinear las $\frac{10^8}{10^7}$
- High sensitivity

High resolution **and high efficiency**

- \triangleright Chopped cw light for weak transitions
- \triangleright Pulsed light for strong transitions

Weakness:

- \triangleright Spectral range of cw light
	- \triangleright Production of UV light
	- \triangleright Photons density

Technique

 $52V$ 3.7 min 3.9 Bunched radioactive Deflector plates Dumped ions beam from ISOLDE Deflector 40 keV Dumped plates 30° bend atoms **Contract Contract** Pulsed laser beams Charge exchange cell Interaction region (UHV) Differential pumping region Beta detection station

Collinear Resonance Ionization Spectroscopy

As a function of the laser frequency we measure beta particles emitted by ⁵²K and its daughters

KU LEUVEN

[MeV]

Isotope T_{1/2}

⁵²K 110 ms 17.130

 $52Ca$ 4.6 s 6.1

⁵²Sc 200 ms 9

 52 Ti 1.7 min 1.9