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Motivation: Need for suitable techniques 

Model independent study of the 

 Nuclear spin    I 

 Magnetic dipole moment    μ 

 Electric quadrupole moment    Q 

 Changes in the mean square charge radii   δ<r2> 

 

of the ground state and long lived isomeric states of exotic isotopes 

  High resolution 

 High efficiency  

                 
 The distance between the peaks carries the magnetic 

moment information  

 The centroid (relative to the reference) gives us the changes 

in the ms in the chain  

 Spin assignment: number/ relative intensities / ratio of HF 

parameters / … 
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Motivation: Need for new techniques  

Model independent study of the 

 Nuclear spin    I 

 Magnetic dipole moment    μ 

 Electric quadrupole moment    Q 

 Changes in the mean square charge radii   δ<r2> 

 

of the ground state and long lived isomeric states of exotic isotopes 

  High resolution – collinear laser spectroscopy  

 High efficiency – In-source RIS 

  

                 CRIS 
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Principle of CRIS 

Figure by A. R. Vernon*  

Poster A. R. Vernon Poster 48  

Developments of the Collinear Resonance Ionization Spectroscopy (CRIS) experiment at CERN-ISOLDE  
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Principle of CRIS 

Figure by A. R. Vernon*  

A.R. Vernon et al. in preparation   
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Principle of CRIS 

Figure by A. R. Vernon*  
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Principle of CRIS 

Figure by A. R. Vernon*  
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Lowest limit 1 count/h background rate (dark count rate)   



High efficiency and high resolution 

• Resolution  

• Narrow band lasers 

• Remove power broadening  

• Laser atom related line shape distortion and shifts 

• Efficiency = εTRANS* εCEC*εRIS*εDET 

• Particle detection   

• Efficient RIS  

• 1%  100 ions/s before ISCOOL = 1 count/s signal 

 

isobaric/nonresonant  background suppression 

• Ultra high vacuum in the interaction region 

• Reduction of non-resonant ionization rate 

• Suppression of 1:106
 106 ions/s beam = 1 count/s background    

 

Precision and accuracy in case of light systems 

• Precision of laser scanning and frequency measurement  
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Challenges: 

19K 

21Sc        
       

29Cu        
       

31Ga       
               

49In          
               

50Sn       
                       

87Fr          
                        

88Ra 

High resolution CRIS studies preformed since 

2014 

16 nuclear states 
38-52K 

17 nuclear states 
63-66, 68-78Cu 

>60 nuclear states 
101-131In 

7 nuclear states 
203,206,207,219,221Fr 
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CRIS: Laser lab 

* Details of the laser lab can be fount the PhD thesis of dr. Shane G. Wilkins   
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CRIS: Laser lab 

Laser Type Bandwidth Power/ 

Energy  

SHG THG 

MSquared Ti:sa CW <1 MHz 5 W Y N 

Matisse Ti:sa 

 

CW < 1MHz 2.5 W Y N 

Dye  CW <1 MHz 2.5 W Y N 

Injection-

locked*2 

Ti:sa Pulsed ~ 20 MHz ~ 300 uJ*1 

Y Y 

Millenia 

Sprout 

Matisse 

MSquared 

DL PRO 

HeNe 

WSU2 

WS6 

Ti:sa Z cavity 

Ti:sa Z cavity 

Inj.-locked  

Inj.-locked  

LEE 

PDL 

PDL 

COBRA 

Brilliant 

Brilliant 

Litron 

Litron 

Litron 

SHG 

SHG 

THG 

SHG 

CW 
Pulsed 

Dye 

Ti:sa 

1064 nm 

532 nm 

355 nm 

Narrow band laser in at CRIS 

Dye 

Ti:sa 

1064 nm 

532 nm 

Other  

*1Energy /pulse  
 

*2Mikael Reponen Poster 97 

  V. Sonnenschein  Poster 31  
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CRIS: Laser lab 

Laser Type Rep.rate Bandwidth Energy  SHG THG 

Z cavity  Ti:sa 1 kHz 6 GHz 260 uJ Y Y 

PDL 
Dye 

 
100 Hz ~10 GHz 0.5-4 mJ Y Y 

COBRA Dye  100 Hz 1.8 GHz 6 mJ Y Y 

Litron Nd:YAG 100 Hz 80 mJ Y N 

Litron 
Nd:YAG 

 
100 Hz 250 mJ Y Y 

Brillinat 
Nd:YAG 

 
20 Hz 850 mJ Y Y 

Millenia 

Sprout 

Matisse 

MSquared 

DL PRO 

HeNe 

WSU2 

WS6 

Ti:sa Z cavity 

Ti:sa Z cavity 

LEE 

PDL 

PDL 

COBRA 

Brilliant 

Brilliant 

Litron 

Litron 

Litron 

SHG 

SHG 

THG 

SHG 

CW 
Pulsed 

Litron 

Litron 

Brilliant 

Brilliant 

Litron 
Dye 

Ti:sa 

1064 nm 

532 nm 

Broadband lasers at CRIS 
Dye 

Ti:sa 

1064 nm 

532 nm 

355 nm 

Other  

Inj.-locked  

Inj.-locked  
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CRIS: Laser lab Brilliant 

Brilliant 

Litron 

Litron 

Litron 

Millenia 

Sprout 

Matisse 

MSquared 

DL PRO 

HeNe 

WSU2 

WS6 

Ti:sa Z cavity 

Ti:sa Z cavity 

Inj.-locked  

Inj.-locked  

LEE 

PDL 

PDL 

COBRA 

Brilliant 

Brilliant 

Litron 

Litron 

Litron 

SHG 

SHG 

THG 

SHG 

CW 
Pulsed 

Wavelength meters 

WSU2: 2 MHz absolute accuracy 

             4 channel switchbox  

                      

WS6: absolute accuracy 600 MHz 

 

Both recorded in the CRIS DAQ, CRISTAL* 

 

 

Frequency references 

HeNe (temperature stabilized)  

DL PRO 780   Toptica diode laser locked to a                                                                                                                                                                                                                                                                   

             hyperfine transition in Rb   

*Developed by R.P. de Groote 

 Poster  122 



High resolution resonance ionization spectroscopy 

RIS: 

 Chopped cw light (25 mW ) + 1064 nm 

 Reduce optical pumping  

 20(1) MHz FWHM 

 Delayed ionization  

 AC Stark effect  

 

Efficiency ~ 1:1000 

Isobaric/nonresonant  background suppression 1:105 
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First High resolution CRIS – 87Fr  

R.P. de Groote et al., Physical review letters 115 (13), 132501 

R.P. de Groote et al., Physical Review A 95 (3), 032502 

Contamination @ mass 202  ~ 105  ion/s 

202Fr yields  ~100 ion/s 

221Fr 

100 ns 

100 ns 



High resolution and efficiency   

RIS: 

 Injection-locked laser and THG (~ 1mW @ 1 kHz) 

 60 MHz FWHM 

 Delayed ionization  

 Autoionizing (AI) state    

 

Efficiency 1:100 

Background suppression 1:107 

 background of 1 count in every 400 s  

  Background free spectra 
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High resolution and highest efficiency – 29Cu 

R. P. de Groote et al., Phys. Rev. C 96, 041302(R) – Published 4 October 2017 

V. Sonnenschein. PhD thesis, University of Jyväskylä, 2015. 

Contamination @ mass 78  ~105  ion/s 

78Cu yields  ~20 ion/s 

Mikael Reponen Poster 97 

V. Sonnenschein  Poster 31  

 



RIS: 

 Injection-locked laser and THG 

 60 MHz FWHM (~0.5 mW @ 1kHz rate) 

 Delayed ionization 

 1064 nm ionizing step   

 

Efficiency 1:2000 

Isobaric/nonresonant  background suppression 1:107 

 10-10 mbar in the interaction region 

 High non-resonant background due to  

 non resonant 1064 step  

 collisional background   
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High resolution and high efficiency– 49In   

Contamination @ mass 131  107 

131In yields 103 ion/s 

131In 

R. F. Garcia Ruiz, A.R. Vernon, C. L. Binnersley PRX accepted for publication   
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Lessons we learned: 
 

Background suppression needs to be improved 

 High power nonresonant ionization introduced background  Use AI when possible 

 1064 nm laser pulse fired before the RIS steps to clean the beam  (30% times lower background in In ) 

 Field ionization of Rydberg atoms before the IR  (3 times less background in In) 

 Different mass regions have different contributions to background  

 
 Cross section for collisional ionization? 

 Laser ionization? 

 Role of  molecular beams? 

 

 



RIS: 

 Chopped cw light + Dye + 1064 nm 

 Delayed ionization – efficiency loss   

 

Efficiency 1:1500 

Isobaric/nonresonant  background suppression 1:107 

 Rydberg atoms removed  8 times lower background  

 1064 nm related background   2 times lower background 

 Still, high collisional background rate (stable Cr) 

 Beta detection   
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High sensitivity  –19K   

Contamination @ mass 52  ~ 107  ion/s 

52K yields  ~300 ion/s 

*Wasn't the first time decay spectroscopy was used at CRIS (Phys. Rev. X 4, 011055 – Published 28 March 2014) 

Hyperfine structure of 52K obtained by detecting the 

beta decay of resonantly ionized 52K isotopes 

52K 



Delayed ionization – efficiency loss   

Background  

Rydberg atoms removed 

Beta decetion   
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Precision and accuracy  

47K 

a) FPI transmission peaks detected using photodiodes 

during each 47K scan; b) Hyperfine structure of 47K 



 Precision of the wavelength measurement 

  σ = 0.77 MHz  

 Consistency of hyperfine parameters 

 In good agreement with literature  
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Precision and accuracy  
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a) Uncorrected raw data showing the drift of the centroid of 
47K during the experiment; b) Centroid of 47K after 

corrections using the stable frequency reference 

Comparison of the changes in the ms charge radii 

obtained at CRIS to literature 

Comparison of the hyperfine parameters obtained at 

CRIS to literature 

0.1 
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20 22 24 26 28 
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References: 

Kreim et al, PLB 731 97 (2014) 

F. Touchard et al., Physics Letters B 108, 169 (1982). 



 AC Stark shift 

 Asymmetric peaks  

 Higher efficiency  

 Consistency of hyperfine parameters 

 Centroid shifts  

 Different for different isotopes  

 Increase with laser leaser power  
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Precision and accuracy  

A. Koszorus, X. F. Yang et. al., in preparation   
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• High resolution and high efficiency achieved at CRIS  Weak transition (A ~ 106 1/s) and delayed ionization  

• Background suppression  ultra high vacuum 10-10 

         ionization from Rydberg states after the CEC 

                                               1064 nm for cleaning  

                        Understanding source of background rates is the key to sensitive measurements  

 

• Laser atom interaction investigated (better understood)  delayed ionization solves the problem of line shape distortion  

                                                                                                    frequency shifts have to be investigated in light systems   

• Precision less than 1 MHz  

 

• Isobaric/nonresonant  background suppression still the bottleneck: 

• AI 

• Field ionization  

• Decay spectroscopy 

• Energy filter? 

• Electron ion coincidence? 
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Summary and Outlook  



Thank you for your attention! 

The University of Manchester 

Institut de Physique Nucléaire d'Orsay 

CERN 

Department of Physics, New York University 

Institut für Physik, Johannes Gutenberg-Universität 

Peking University  

University of Jyvaskyla 

KU Leuven, Instituut voor Kern- en Stralingsfysica 
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Physical Research Laboratory (PRL), Ahmedabad and the computations were carried out using the Vikram-100 HPC cluster of PRL.We would like to thank the ISOLDE technical group 

for their support and assistance, and the University of Jyvaskyla for the use of the injection-locked cavity. 
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Ra experiment 2016 

 25(2) MHz FWHM 

 Delayed ionization  

 RIS full of surprises – online developments  

 Chopped and cw light both worked 

 Importance of RIS developments  
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Selected RIS: High resolution – 87Fr and 88Ra  

No. Scheme [nm] PDL [cm-1] 

1 714+783+555 17971 

2 714+783+555 17994 

3 714+555+555 17994 

4 714+783+555 18001 

5 714+555+555 18001 

S.G. Wilkins PhD thesis 

K. M. Lynch et al., PRC 2017 



• High efficiency: in-source  

• High resolution : collinear laser spectroscopy  

• High sensitivity  
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Motivation: Need for new techniques  

(far from a complete survey) 

Targeted region 



 Chopped cw light for weak transitions 

 Pulsed light for strong transitions 

  

Weakness: 

 Spectral range of cw light  

 Production of UV light 

 Photons density     
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High resolution and high efficiency  

R.P. de Groote et al., PRL 2015 

R.P. de Groote et al., PRA 2017 



Technique  
Collinear Resonance Ionization Spectroscopy  

 

 

Beta detection 

station  

As a function of the laser frequency we measure 

beta particles emitted by 52K and its daughters 

Isotope T1/2 Qβ [MeV] 

52K 110 ms 17.130  

52Ca 4.6 s 6.1 

52Sc 200  ms 9 

52Ti 1.7 min 1.9 

52V 3.7 min 3.9 

28 


