Beam Thermalization at the National Superconducting Cyclotron Laboratory

Chandana Sumithrarachchi

D. J. Morrissey, K. Lund, G. Savard, S. Schwarz, A. C. C. Villari, R. Ringle, G. Bollen, E. Kwan

Outline

- Overview of Stopped Beam Facility at NSCL
- Gas catcher operation
- Experimental results
Stopped Beam Facility at NSCL

A1900 fragment separator

Stopped beam facility (N4 vault)

Low energy beam area

User demand: High purity beams

Decay experimental stations

User demand: Very low rates with high purity beams

LEBIT (Mass measurements)

User demand: High rates with bare ion beams

BECOLA (Laser Spectroscopy)

User demand: High rate beams

ReA3
Stopped Beam Facility at NSCL

- Large linear gas catcher constructed by Argonne National Lab
- 140 cm long gas catcher operates at pressure of 70 Torr and temperature of \(-5^\circ C\)
- Operate with Radio-frequency (RF) + DC voltage gradient

Diagram:
- Object point
- Dispersive focal plane
- RFQ ion guide
- Beam from A1900
- Mass Analyzer

Argonne National Lab

140 cm long gas catcher

Pressure: 70 Torr
Temperature: \(-5^\circ C\)

Operate with RF + DC voltage gradient
Low Energy Area Operations Overview

• Present linear gas catcher installed: Aug 2012
• Total number of low energy radioactive beams = 76
• Number of beams with different elements = 23
• Gas catcher delivers beams to experiments about 35% of total hours of NSCL operation

• Beams for LEBIT (22)
 • Fe-62,63,67,51
 • Co-63,64,65,68,69,52
 • Br-72
 • O-14
 • N-13
 • C-11
 • Cl-31
 • Si-24
 • P-29
 • Na-21
 • Cu-58,56
 • As-65,67

• Beams for BECOLA (12)
 • Fe-51,52,53
 • K-35,36,37
 • Ca-36,37,38,39
 • Ni-55,56

• Beams for structure (4)
 • Ga-76
 • Mn-60
 • S-42
 • Rb-91

• Beams for ReA3 (15)
 • Ga-76,75
 • Ar-34,37,46
 • K-37,46,45,47
 • Cl-34
 • Br-77
 • Mg-22,23
 • Se-71,72

• Gas Catcher experiments (23)
 • Ga-76
 • K-37,47
 • P-29
 • Cl-33
 • S-40
 • Ni-55
 • Se-83,84
 • Si-27
 • Mg-22,23,29
 • O-14
 • Si-26
 • Br-72,78
 • Kr-73
 • Ar-46,34
 • Co-54
 • Sc-50,49
New Addition to Stopped Beam Facility

Online testing: Advanced Cryogenics Gas Stopper (ACGS)
Talk by K. Lund in the end of this session

Future: Cyclotron gas Stopper
Poster (90) by S. Schwarz

Stopped beam facility (N4 vault)

A1900 fragment separator

Low energy beam area

ReA3
Scheme for Thermalization of Projectile Fragmentation

- Production of fragments from high energy beam
 - Large momentum spread due to reaction mechanism and production target.

- $B\rho$ and ΔE separation
 - A1900 separator (High acceptance: 5% $\Delta p/p$), achromatic wedge

- Momentum compression and thermalization
 - Narrow momentum spread beams lead to high stopping efficiency (L. Weissman et al., NIM A 522 (2004) 212)

- Gaseous ions collection

- Low energy beam transport

Method for producing an ideal incident beam:
- Degrade beam at the object point
Momentum compression scheme: 40S fragment

40S beam from A1900

40S Fragment thermalized with adjustable degrader and fixed angle wedge at the dispersive focal plane

40S Fragment thermalized with: 1) first degrader at the object point 2) second adjustable degrader and fixed angle wedge at the dispersive focal plane

Rate increased by 1.7 times for 40S beam

40S range distribution

19% of total beam captured in gas catcher

40S range distribution

32% of total beam captured in gas catcher
Improvement: Tunable Wedge System

- Stopping efficiency increases due to the angle tunable wedge system

Angle tunable wedge system installed recently.

- Two fused silica wedges rotate opposite direction to get the desired angle
- Angle per wedge = 2.5 mrad; middle thickness = 0.5 mm; Max wedge angle = 5 mrad
- Tested with 31S beam
Stopping and Extraction Efficiency

- Total Efficiency Includes stopping and extraction efficiencies of the gas catcher, and RFQ efficiency.
- RFQ extraction efficiency ~ 80 %
- Incoming particle rate to the gas catcher varies from 10^2 to 10^8 pps.

Efficiency Measurement

- PIN detector
- Beta decay detector

Total Efficiency Measurement

Q – Ionization rate density = \frac{\# \text{ of ion pairs} \times \text{Incoming beam rate}}{\text{Stopping volume}}
Molecular Ion Formation with Fragments

- Impurity molecules in buffer gas form molecular ions with fragments (Depends on impurity concentration & fragment chemistry).
- lower the beam rate for experiments and some experiments can’t use beams in molecular ion form.

Ca Molar Ion Distribution

- Apply negative offset voltage at RFQ
- Compensate the offset voltage by increasing the platform voltage

- 2^+ molecular ions breaks when offset voltage increases.
- Produces bare 39Ca$^{2+}$ and 39Ca$^{+}$
Stable Ion Contaminants with Low Energy Radioactive Beam

- Stable ions are formed during thermalization process.
- Contribute to high beam current (depends on incoming rate); Increase space charge in gas catcher

\[\frac{m}{D} \sim 1500 \]

Some cases, stable ions can be rejected with slits

\[\text{Stable ions are formed during thermalization process.} \]

\[\text{Contribute to high beam current (depends on incoming rate); Increase space charge in gas catcher} \]

\[\frac{m}{D} \sim 1500 \]

\[\text{Some cases, stable ions can be rejected with slits} \]

\[\text{Major issue for low rate experiments} \]

\[\text{Mass analyzer resolution (R) } \frac{m}{\Delta m} \sim 1500 \]

\[\text{(MCP image after mass separation (set for mass = 29)}) \]

\[\text{Activity on the left} \]

\[\text{This is all } \text{A=}29 \]

\[\text{Stable and radioactive masses at } \text{A=}29 \]

\[\text{e.g. COH}^+ \]

\[\text{Major contribution come from oxygen molecular ions} \]

\[\text{\(\text{O}_2^+ \)} \]

\[\text{\(\text{Current (A)} \)} \]

\[\text{\(\text{A/Q} \)} \]
Water Dissociate to Produce Oxygen ions

- Stable ion output rates were measured as a function of incoming beam rates
- Incoming beam rate controlled by attenuation and momentum slits (dp/p = 0.5, 1.0 & 2.0%)
- Water dissociates to produce oxygen ions when increasing the energy deposition rate.
Decay Products as Contaminants

ReA3 Experiment: Measurement of the $^{34}\text{Ar}(a,p)^{37}\text{K}$ reaction cross section – K. Chipps

- ^{34}Ar beam was delivered to reaccelerator
- Beam composition: ^{34}Ar (38%), ^{34}Cl (16%), ^{34}S (46%)

^{34}Ar beam delivers with low energy beams

- ^{34}Ar beam was delivered to reaccelerator
- ^{34}Ar beam composition: ^{34}Ar (38%), ^{34}Cl (16%), ^{34}S (46%)

^{34}Ar: $T_{1/2} = 843$ ms

^{34}Cl: $T_{1/2} = 1.53$ sec

^{34}S: Stable

Decay products delivers with low energy beams
Decay products in low energy radioactive beams

Daughter products were observed after incoming beam turn off
eg. Decay of 46K was observed after turning off incoming 46 Ar radioactive beam.

Fragments stopped on the back wall of gas catcher decay and eject the recoil nucleus from the wall.
Outlook

- Stopped Beam facility at NSCL provides beams to low energy experimental programs successfully (35% of total operation time)

- Improve beam stopping efficiency by momentum compression

- Application of Collision Induced Dissociation technique provides beams without molecular ion form

- Identify oxygen ion production mechanism in the gas catcher

- Decay products from fragments stopped on the wall of gas catcher comes out with the low energy beam

- New beam thermalization capabilities are on the way to reality soon (ACGS, Cyclotron Stopper)
Thank You for Your Attention