Superconducting Combined Function Magnet System for J-PARC Neutrino Beam Line

Toru Ogitsu, Yasuhiro Makida, Ken-ichi Sasaki, Tatsushi Nakamoto, Hirokatsu Ohata, Nobuhiro Kimura, Takahiro Okamura, Akio Terashima, Yasuo Ajima, Norio Higashi, Takayuki Tomaru, Masahis Iida, Kenichi Tanaka, Osamu Araoka, Shoji Suzuki, Akira Yamamoto, Takashi Kobayashi, Atsuko Ichikawa, Takeshi Nakadaira, Ken Sakashita, Takuya Hasegawa, Yoshiaki Fujii, Hidekazu Kakuno

Contents

Introduction

Superconducting Combined Function Magnet Prototype Development Mass Production System Overview and Cryogenics Commissioning Hardware Commissioning Beam Commissioning Conclusion

Tokai-to-Kamioka (T2K) long baseline neutrino oscillation experiment

Neutrino beamline

Primary Beam-line

Assumed Beam Loss 750W@Prep. 250W@FF. (1W/m @ <u>ARC)</u>

Optimize Cost & Schedule

Contents

- Introduction
- Superconducting Combined Function Magnet Prototype Development Mass Production System Overview and Cryogenics Commissioning Hardware Commissioning Beam Commissioning Conclusion

SC Combined Function Magnet

E.M. Design: Single layer CFM

Mech. Design: Plastic Spacer, Keyed Yoke,

KENCO OLI MERCI

 (\mathbf{v})

Specification

Coil ID.:	173.4mm	Op. Curren	t:	734	5 A			3D-88	3D-LE	3D-RE	3D-Integral
Mag Longth:	2200 mm	On Margin	•	72%			Lmagm)	1.94	0.78	0.58	3.3
	5500 11111		•	/ ' ' ' ' '	'		B1 (T)	2.591	2.602	2.603	2.601
Mech. Length:	3630 mm	Inductance			\ 1	14	b2(uni)	3628	3567	3517	3581
Tmax [.]	< 5 0K	Stored Fne	rav:	386	ik.l		b3(uni)	-093	-581	-1015	-337
			. 97.				b4(uni)	5.01	-111	-235	-23
(Supercritical Helium	Cooling)	# of magne	τ. /	28			b5(uni)	2.07	-89	-160	-35
Dipole Field	2 59 T	SC Cable:		Nb]	Ti/Cu	\setminus	b6(uni)	-636	-7.9	-9.8	-7.2
							b7(uni)	-1.16	-35	-53	-24
Quad. Field:	18.6 I/m		Ruthe	errora i y	pe Cable		b8(uni)	-395	-29	-36	-37
Field Error:	< 10^-3 @)	for Ll	HC Dipole	e Outer-L		b9(uni)	-886	-7.7	-7.9	-84
50mm				Ī			b10(uni)	-025	0.3	0.3	-00
Sullill Deals field at conduct			-				b11(uni)	-310	-27	-26	-29
 Peak field at conduct 	<u>tor in strai</u>	<u>gnt section</u>	<u>is 4.0</u>	<u>5 T at 50 (</u>	<u> </u>		b12(uni)	2.07	1.7	1.6	1.9
				0 =0 0/							
 Load line ratios at 5 l 	<u>K for 40 &</u>	<u>50 Gev are</u>	<u>58 %</u>	<u>& /2 %, I</u>	<u>respectiv</u>	vely	<u>y.</u>			-	
								Good	Not	So	Good
 Field quality within a 	tolerance	<u>of 10-3 is ac</u>	cepta	<u>able.</u>							Enough
											LIIUUUUI

Contents

- Introduction
- Superconducting Combined Function Magnet Prototype Development Mass Production System Overview and Cryogenics Commissioning Hardware Commissioning Beam Commissioning Conclusion

GFRP Wedges and Spacers

• End spacers: G10 (CNC file)

Verified by practice coil winding and mechanical short model study

Coil Winding Tool

Coil Winding for Prototype Magnet

Mirror-symmetry Top & Bottom coils of the prototype

Coil with pre-pregnant Epoxy resin cured at 400K for 5 hours.
Asymmetric coil oversize determined by 2 sets of shims.

stress during the coil size measurement.

Cured bottom coil on the mandrel. Several sets of strain gauges are installed on the press-bars in both sides to measure coil stress during the coil size measurement.

Expected pre-stress of 60-80 MPa after magnet assembly is similar to the design value of 80 MPa.

Plastic Collar

Compression Molding @430 K, 10 min. & Post-curing w/ Forming Jig @ 450K, 10hrs

Glass-reinforced Phenolic Thermosets Rin=102 mm, t=20 mm, L= 100 mm *PM9640 supplied by Sumitomo Bakelite, and fabricated by Arisawa

Size control is very important!! R&D to search the most appropriate condition needs 18 months.

Molding jig was designed with taking into account the consistent deformation.

• Maximum Deformation: 0.1-

Yoking -Coil Installation-

Yoking -Top Assembly Installation-

Top Collar Installation

Top lead Collar Installation

Top Yoke Installation

Top Yoke Installation Complete

Yoking -Press-

9

Shell Welding

Longitudinal shell welding by a set of two automated welding machines.

Final Assembly

Installation of the alignment target

Excitation Test of the 1st Prototype

I_{op} = 7345 A @ 50 GeV (and I_{max} = 7,700 A) reached with no quench, on March 4,

2005 Installation into cryostat;

Participating member

Record of Excitation current

	Measurement	Computation
Current (A)	7460	7345
$B_1(T \bullet m)$	8.906	8.712
B₂ (T•m)	3.127	3.120
B ₃ (T•m)	-220.6*10 ⁻⁴	-293.6*10 ⁻⁴
B_4 (T•m)	$-5.9*10^{-4}$	$-20.1*10^{-4}$
B ₅ (T•m)	-51.9*10 ⁻⁴	-30.6*10 ⁻⁴
$B_6 (T \bullet m)$	-75.2*10 ⁻⁴	-62.8 *10 ⁻⁴
$B_7 (T \bullet m)$	-44.6*10 ⁻⁴	-20.9*10 ⁻⁴
B ₈ (T•m)	-74.5*10 ⁻⁴	-32.0*10-4
B_9 (T•m)	-79.9*10 ⁻⁴	-73.4*10 ⁻⁴
B_{10} (T•m)	-13.8*10 ⁻⁴	-0.3*10-4

Field Measurement Result

Contents

- Introduction
- Superconducting Combined Function Magnet Prototype Development Mass Production System Overview and Cryogenics Commissioning Hardware Commissioning Beam Commissioning Conclusion

Manget Mass Production

Mass production bidding won by Mitsubishi Electric Number Produced Built to Print Contract Major Monitoring Data Coil Length, Prestress Yoke size Shell size Warm Field Quality Cold Test at KEK Presented by Okamura (Wednesday Poster)

Warm Field Measurement

R_{ref} = 50 mm

Coil Prestress Measurement Results

Average: ~90 Mpa Standard Deviation: ~7 Mpa Equivalent Coil Size Deviation High Field Side: 0.07 mm (0.13 mrad) Low Field Side: 0.14 mm (0.26 mrad)

MQXA (LHC IRQ) Inner Coil Size Deviation: 0.022 mm (0.1 mrad)

Influence to Field Quality by Coil Prestre

B1

-0.0 B1 Average: -1.184 Tm/kA ; -0.1 B2 Average: 0.4278 Tm/kA -0.1 = Q/B: 0.36 -0 Good For Optics

B1 Standard Deviation:
 22.56E-4 Tm/kA
 = ΔX 0.3 mm
 Acceptable
 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

WMFM Results

R_{ref} = 50 mm

Higher Harmonics

		Opera 3D			Measured						
B_n		7345 A	5830 A	4400 A	7345A		5830 A		4400 A		
n	Unit	calculated	calculated	calculated	average	standard deviation	average	standard deviation	average	standard deviation	
B3int	1×10⁻⁴ T•m	293.45	236.56	179.18	218.99	6.50	181.74	5.38	138.44	3.81	
B4int	1×10⁻⁴ T•m	-20.33	-64.83	-52.10	-7.55	4.55	-62.67	3.82	-53.71	2.74	
B5int	1×10 ⁻⁴ T∙m	30.68	41.02	32.12	47.77	3.31	53.79	2.45	40.52	1.74	
B3	UNIT	1.62	1.91	1.21	5.12	0.84	3.86	0.78	3.48	0.76	
B4	UNIT	-9.04	0.26	2.30	-9.19	0.42	-0.64	0.43	-0.77	0.41	
<u>B5</u>	UNIT	2.51	-0.93	-1.47	0.50	0.31	-1.89	0.29	-1.90		
B6	UNIT	6.28	5.98	5.82	6.72	0.15	6.22	0.12	5.94	0.11	
A3	UNIT	0	0	0	0.12	1.05	0.22	1.05	0.24	1.07	
A4	UNIT	0	0	0	-0.11	0.19	-0.04	0.21	-0.02	0.20	
A5	UNIT	0	0	0	0.08	0.36	0.07	0.34	0.06	0.31	

R_{ref} = 50 mm

Higher Order Mutipoles: Acceptable

Contents

Introduction

Superconducting Combined Function Magnet Prototype Development Mass Production System Overview and Cryogenics Commissioning Hardware Commissioning Beam Commissioning Conclusion

System Overview

LHC&J-PARC Neutrino SC System

Comparison

- Size 27km vs 150m
- Number of Magnets ~5000? Vs 28
- Inductance and Stored Energy
 - LHC (1 sector) : 15.1H, 1.2GJ
 - J-PARC: 0.4H, 10MJ(50GeV), 5MJ(30GeV)
- Helium Inventory
 - LHC(overall):56万Nm³
 - J-PARC: 4000Nm³

Corrector Interconnect

Quench Relief Valve

Corrector Production Manufactured and Tested at BNL Direct Winding on Copper Bobbinn

Cold test for Quench Performance

Parameter	Average Value	Std. Dev.
B1 Integral	2.34 Tm/kA	22.4•10 ⁻⁴ Tm/kA
A1 Integral	2.32 Tm/kA	32.3•10 ⁻⁴ Tm/kA
B1-A1 angle	-1.4 mrad	2.2 mrad

Refrigeration System

Installation Completed by Dec. 2008

Contents

- Introduction
- Superconducting Combined Function Magnet
 - Prototype Development
 - Mass Production
- System Overview and Cryogenics
- Commissioning
 - Hardware Commissioning
 - Beam Commissioning
- Conclusion

Refrigerator Test & Magnet Cool Down

 Refrigerator Test in Dec.
 Refrigeration Power ~ 1.5kW
 Cool Down Magnet By about 10 days

Pressure Drop --steady state mode (230 g/sec ~ 330 g/sec)--

> Wall Friction Coefficient, λ , is treated as adjustable parameter.

Quench Protection Test

 Performance test of quench protection system
 Heater Induced Quench
 Quench Recovery

Cold Diode

- Influence of Neutron to Cold Diode
 - Intensively studied at CERN by D. Hagedorn
 - Change Forward Voltage
 - Using LHC Arc Quad Assembly
 - 7.5kA Operation
 - Limit; 2• 10¹⁴ n/cm²

Courtesy D.Hagdo

Bypass Diode Test

Contents

- Introduction
- Superconducting Combined Function Magnet
 - Prototype Development
 - Mass Production
- System Overview and Cryog
- Commissioning
 - Hardware Commissioning
 - Beam Commissioning
- Conclusion

T2K beamline started operation! FIRST SHOT after turning on SC magnets at 19:09, Apr.23,

First observation of muons produced in neutrino beamline

52

Optics Study

SC Magnet current dependence Beam induced quench eventually

Beam Induce

Partial beam loss observed at 4200

At around SCR2~SCR4

Full beam loss observed at 4160 A

- Beam loss in between SCR2 ~ SCR4
- Quench at SCR3F
- No damage observed

Optics Plot

Contents

- Introduction
- Superconducting Combined Function Magnet
 - Prototype Development
 - Mass Production
- System Overview and Cryogenics
- Commissioning
 - Hardware Commissioning
 - Beam Commissioning
- Conclusion

Conclusion

- A SCFM with Single Layer Coil Winding is Developed
- Good Cost & Time Saving with Optimum Condition
 - Half Cell = one SCFM; Dipole > Quadrupole
- Draw back
 - D/Q ratio fixed → It appears to be OK
- International Collaboration
 - BNL, Saclay, CERN
- Construction Completed on Schedule
- Commissioning
 - No major problem with hardware commissioning
 - Minor problem associate with corrector current lead
 - scheduled to be fixed in this summer
 - Beam Commissioning went smoothly
 - Beam went through SC arc with the first attempt
 - Beam behaved as expected (almost)
 - Beam induced quench > quench protection works OK

Application of SCFM 1

Good Cost & Time Saving with Optimum Condition Half Cell = one SCFM Dipole > Quadrupole For Beam Line Already good enough? So far so good. For Accelerator Ring Needs more study on field quality Neutrino production magnets show good reproducibility = there are some hope **Special Accelerator**

Muon Acceleration FFAG?

Application of SCFM 2

Good Cost & Time Saving with Optimum Condition

- Half Cell = one SCFM
- Dipole > Quadrupole
- For Beam Line
 - Already good enough?
 - So far so good
- For Accelerator Ring
 - Needs more study on field quality
 - Neutrino production magnets show good reproducibility
 - = there are some hope
- Special Accelerator
 - Muon Acceleration FFAG?

Application of SCFM 3

- A SCFM with Single Layer Coil Winding is Developed
- Good Cost & Time Saving with Optimum Condition
 - Half Cell = one SCFM
 - Dipole > Quadrupole
- For Beam Line
 - Already good enough?
 So far so good
- For Accelerator Ring
 - Needs more study on field quality
 - Neutrino production magnets show good reproducibility
 - = there are some hope
- Special Accelerator
 - Muon Acceleration FFAG?

Acknowledgment

Thank you very much for your listening

Life

Work

Acknowledgment

Acknowledgment

JFY 2001 : 10 Cell FODO 20 Dipole + 20 Quads = 40 Magnets

JHF proton beamline to neutrino experiment -preparation section

Quadrupole: 36T/m*0.9m

Ichikawa w/ help Doornbos

Optics with 14 Doublets

