

# Cryo-Collimator (Catcher) for FAIR SIS100 and LHC? Task 3

**COLMAT Kick-off meeting** 

**CERN** 

Peter Spiller

17.6.2009





#### **Ionization Beam Loss and Dynamic Vacuum**





- Life time of U<sup>28+</sup> is significantly lower than of U<sup>73+</sup>
- Life time of U<sup>28+</sup> depends strongly on the residual gas pressure
- Ion induced gas desorption (η≈ 10 000) increases the local pressure
- Beam loss increases with intensity (dynamic vacuum)









#### **Intermediate Charge State Heavy Ion Operation**

- Optimized lattice for peaked distribution of ionization beam loss
- Catcher system for ionization loss control with low desorption yield material
- Strong distributed pumping system
   (sufficient area and sufficiently cold (actively cooled) vacuum chambers)
- Long term pumping after built up of stacks of monolayers (cryogenic surfaces)
- Infinitely refreshable (e.g. in a shut downs)
- Low systematic beam loss to prevent initial pressure bumps
- Low initial static pressure with a small amount of heavy components (warm sections determine the average, initial pressure)
- Fast ramping and short cycle times (for a fast decrease of cross sections)





New lattice design for intermediate charge state heavy ion operation with ionization beam loss: Charge separator lattice





Fraction of ions missing the catchers increases for lighter ion and multiple ionization



Catching efficiency has been compared for different lattice types as a function of the distance of the catcher from the beam edge (for U<sup>28+</sup> > U<sup>29+</sup>)







**Design Concepts** 

| Desorption Catcher             |                 |                               |
|--------------------------------|-----------------|-------------------------------|
| Absorber wedge                 |                 |                               |
| Length                         | m               | 0.6                           |
| Density                        | kg/m³           | 8                             |
| Material                       |                 | Copper                        |
| Low desorption coating         |                 | 100 nm Ni, 100 .<br>200 nm Au |
| Temperature                    | K               | 50 100 K                      |
| Weight                         | kg              | 2.3                           |
| Alignment tolerance            | mm              | 0.5                           |
| Heat release from the beam     | W               | < 10                          |
| Chamber                        |                 |                               |
| Aperture                       | mm <sup>2</sup> | 135 x 65                      |
| Chamber shape                  |                 | rectangular                   |
| Operation temperature          | K               | 4.5                           |
| Cooling power                  | W               | 100                           |
| General                        |                 |                               |
| Length of module               | m               | 0.7                           |
| No. of modules per superperiod |                 | 8                             |
| Total no. of collimators       |                 | 66                            |



### Goals



- Set-up of a prototype cryo-catcher with similar technical design as finally used for SIS100
- Installation of the prototype cryo-catcher at a HE Cave at GSI and test with SIS18 heavy ions beams



#### **Observable**



- Measurement of the pressure rise on the beam axis
- Measurement of the amount of gas desorption and effective desorption yield
- Measurement of the mass spectrum of the desorbed atoms
- Measurement of the catcher temperature at different beam loads
- Determination of the required cooling power at different beam loads
- Beam position and number of ions



## **Simulation of Operation Conditions**









## **Cost Estimate**



| Component/task                                           | Costs [k€ |
|----------------------------------------------------------|-----------|
| External Design                                          | 40        |
| Cryostat, heat schild, calt-<br>warm-transition          | 100       |
| Local cryogenics                                         | 100       |
| UHV diagnostics (Mass spectr. Total pressure gauge etc.) | GSI       |
| Temperature measurement                                  | GSI       |
| Electronics                                              | GSI       |
| Valves                                                   | GSI       |
| Beam Instrumentation beam screen                         | GSI       |
| Turbo pumps, valves                                      | GSI       |
| Collimator                                               | 20        |
|                                                          |           |
| Sum                                                      | 200 - 250 |

Personal: (cost equivalent)

1 Physicist

1 Engineer

for 3 years

Total cost: 600 k€

Equipment partially provided by GSI



## **Technical Set-up**



- Cryostat incl. heat shield and support with two cold-warm transitions for the connection to the HE beam transport system and a beam dump
- Beam screen monitor and slow beam transformer
- Catcher chamber with active cooling, temperature sensors, pressure gauges and mass spectrometer
- Evtl. horizontal movable
- Catcher, thermally insulated wedge and block with low desorption gold coating and temperature sensor
- Pumping system for beam pipe and insulation vacuum



## **Design Considerations**





Catcher head using low desorption material and coating (Copper block with Gold coationg and Nickel diffusion barrier)



# **Design Considerations**







#### **WPS**







## **Project Team**



Lars Bozyk – GSI FAIR Synchrotrons Department

H. Kollmus – GSI UHV Department

CERN – contact?

Collaboration: Igor Sekachev, TRIUMF

Task leader: P. Spiller – GSI FAIR Synchrotron Department

