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Outline

• Microwave radiometer (short reminder)

▫ Comparison between photon- and heterodyne detection

• Current lab system

▫ Schematic

▫ First cold tests

• Conclusion
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Photon Detection Setups

• Two principle ways:
▫ Photon counting

▫ Measurement of mean photon flux

• Photon counting
▫ Limited by photon energy 

(Needs  „high energy“ photons)

▫ Energy (frequency) resolution is limited

• Photon flux measurement
▫ Not limited by low energy photons

▫ Excellent frequency (energy) resolution
(easily it can be better than 10-9),
because of usually used “coherent” detection
(normally heterodyne detection)
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• Photon counting:

• Photon flux measurement:

direct heterodyne (“coherent”)

Photon Detection Setups
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• What is the detectable noise temperature for a given 

system noise temperature (Dicke-formula):

• Detectable noise power (assuming no gain fluctuation)

• Averaging time for a given signal/noise ratio:

Choosing the Right Bandwidth

with and

with

DfF: Filter bandwidth

t: Averaging time

TSys: Total system noise temp.
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• What is the best bandwidth for line detection
▫ Detectable background noise power increases with frequency

(Square root)

▫ Signal noise increases with frequency

(Linear, if rect. distribution)

▫ → Bandwidth should not

be larger than line-

width for best signal-

noise ratio

Choosing the Right Bandwidth
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Example

Receiver: TSys=5K

Signal: 10-23W (1photon/s @ 15GHz),

linewidth 10kHz, equal distributed
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• Axion mass range: 40 µeV … 400 µeV

Frequency range: 10 GHz … 100 GHz (l = 3 cm … 3 mm)

• Detection of signal line in frequency domain with

DnA = 10-6 nA

• …

Receiver
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• 2 different devices 

(Low Noise Factory,

Chalmer University)

• Same characteristics @ RT

but 1 is for cryo temperatures

Low-Noise Amplifiers

6-20 GHz Cryogenic Low Noise Amplifier, 5K @ 8-10K

1-15 GHz Low Noise Amplifier, 75K @ RT

cannot significantly reduced

(Nature Materials Nov. 10, 2014

© Low Noise Factory
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• Lab system:

Heterodyne Detection

Fake axion

Signal analyzer

(4 samplers, 1.4% dead time)

LHe bath → 4K THe + 5.5K TAmp = 9.5K TSys

Her the reality is a little bit 

more complicated!

(FT-analysis)

Front end mixers and 

amps
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• Inject fake axion signal with 1.2.10-22 W at LHe temp.
▫ Frequency: 18.85 GHz

▫ Frequency modulated with gaussian noise

▫ Signal bandwidth: 8 kHz, Lorentz-shaped

Heterodyne Detection: First Cold Test
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• Inject fake axion signal with 1.2.10-22 W at LHe temp.
▫ Frequency: 18.85 GHz

▫ Frequency modulated with gaussian noise

▫ Signal bandwidth: 8 kHz, Lorentz-shaped

▫ Received signal after

28h measurement

(averaged signal):

Heterodyne Detection: First Cold Test
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• Inject fake axion signal with 1.2.10-22 W at LHe temp.
▫ Frequency: 18.85 GHz

▫ Frequency modulated with gaussian noise

▫ Signal bandwidth: 8 kHz, Lorentz-shaped

▫ Received signal after

baseline subtraction

and gain correction:

Heterodyne Detection: First Cold Test
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• Inject fake axion signal with 1.2.10-22 W at LHe temp.
▫ Frequency: 18.85 GHz

▫ Frequency modulated with gaussian noise

▫ Signal bandwidth: 8 kHz, Lorentz-shaped

▫ X-Correlation signal

with 8kHz width:

s: Signal

T: Testfunction

(Lorentz, Gauss, …)

Heterodyne Detection: First Cold Test

Highest peak
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• Inject fake axion signal with 1.2.10-22 W at LHe temp.
▫ Frequency: 18.85 GHz

▫ Frequency modulated with gaussian noise

▫ Signal bandwidth: 8 kHz, Lorentz-shaped

▫ X-Correlation signal

with 8kHz width (Zoom):

Heterodyne Detection: First Cold Test
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• Inject fake axion signal with 1.2.10-22 W at LHe temp.
▫ Frequency: 18.85 GHz

▫ Frequency modulated with gaussian noise

▫ Signal bandwidth: 8 kHz, Lorentz-shaped

▫ Why 8kHz Bandwidth?

Algorithm is searching

for best S/N-ratio:

Heterodyne Detection: First Cold Test
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• Inject fake axion signal with 1.2.10-22 W at LHe temp.
▫ Frequency: 18.85 GHz

▫ Frequency modulated with gaussian noise

▫ Signal bandwidth: 8 kHz, Lorentz-shaped

▫ Why 8kHz Bandwidth?

Algorithm is searching

for best S/N-ratio:

Heterodyne Detection: First Cold Test

Bin # Peak Freq. in Hz

Best Filter in Hz

X-corr. S/N Signal #
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• Inject fake axion signal with 1.2.10-22 W at LHe temp.
▫ Frequency: 18.85 GHz

▫ Frequency modulated with gaussian noise

▫ Signal bandwidth: 8 kHz, Lorentz-shaped

▫ Signal +

Lorentz-fit (8kHz):

Heterodyne Detection: First Cold Test
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• Comparison with Allen’s run statistic algorithm showed 

good agreement

• Cold tests are ongoing
▫ 5.10-23 W in 10kHz linewidth already reached

within one week in 10K Tsys (Physical limit)

▫ Different tests runs should give a clearer insight to possible 

problems (quantization noise, …)

Additional Facts:
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• Receiver concept is OK
▫ Dead time 1,4%

▫ Sensitivity in warm and cold is OK

• Next Tests:
▫ Systematic cold measurements

▫ Better Antenna measurements

▫ Cold background measurements in cryostat

Conclusion
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• Contribution of a detector:

(no phase preservation)

• Contribution of an amplifier or mixer:

(phase preservation)

• Limit for low frequencies and/or high temperatures:

Spectral Power Density of (BB)-Noise 

Noise temperature
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• Example:
▫ Spectral power density for different temperatures

Spectral Power Density of (BB)-Noise 
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10 22
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10 19

Frequency (Hz)
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N
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z
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)

400 K

100 K
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1 K

100 K

Amplifier, Mixer

Detector

“Quantum limit”
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• System noise temperature TSys and bandwidth DfF are 

difficult to measure for broadband detectors
▫ Johnson noise

▫ Phonon-electron coupling

▫ Generation-recombination noise

▫ Background noise

▫ …

• → Using noise equivalent power (NEP):

• Sometimes a little bit different NEP definitions are used, most 
of them have factor 2 or 2½ included
(Because of 2 polarizations or time to bandwidth conversion)

Noise Equivalent Power
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• Types of broadband detectors
▫ Bolometers

▫ Microwave kinetic inductance detector (MKID)

▫ Double quantum well detectors

▫ Transition edge sensors (TES)

• Usually they work good only at higher frequencies
(> 50 … 100 GHz)

• Often the devices are background limited
▫ Example:

Background temperature 300 K, bandwidth 50 GHz
→ NEP = 9.2 10-16 W Hz-½

• Temperature and bandwidth can be reduced, but then again 
the other noise sources start to dominate (see later)!

Broadband detectors
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• Noise equivalent power of a heterodyne system:

Comparison: Heterodyne  Direct Det.

LNF-LNC6_20B @ 8K

5 109 1 1010 5 1010 1 1011 5 1011 1 1012

10 21

10 20

10 19

10 18

Non-existing graphene

bolometer with 10 MHz

coupling bandwidth and

20 mK temperature [1].

Unrealistic!!!

State-of-the-art

bolometer
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[1] K.C. Fong and K.C. Schwab, “Ultra-sensitive and Wide Bandwidth Thermal Measurements of Graphene at Low 

Temperatures“, 2012
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• Noise temperature limit for InP devices:
▫ Mainly phonon self heating  Inner bulk black body radiator

Heterodyne Detection: Real Devices

Shi, et. al.

A 100-GHz Fixed-Tuned Waveguide SIS Mixer 

Exhibiting Broad Bandwidth and Very Low 

Noise Temperature, 1997

InP-HFET,

Bryerton et. al.

“Ultra Low Noise Cryogenic Amplifiers for 

Radio Astronomy”, 2013

InP-HEMT

Our amplifier, LNF
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First Cold Measurement
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 NRAO Cryo3-Amplifier
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• First quick and dirty test:
▫ Very simple test in LHe-dewar

▫ Amplifier at LHe-temperature (4.1K)

Gain Noise temperature

Room for improvement!
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Function
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• Measurement time vs. analysis threshold level and 

power boost factor:
▫ 80 disks, LaAlO3, Tsys=8K, effectivity: 75%, 1day adjustment time

Run Optimization

days/GHz
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Sensitivity in terms of Axions

80 disks (LaAlO3)

d=1m, B=10 T, t=200 h, DnA=10-6 nA

8K amplifier temperature

4s detection level
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Photon energy:

Noise equivalent power

“of a photon”:

n: Mean photon flux (background + signal) in 1/s

Frequency n Photon Energy Eg 1 g/s = NEPg for 1 g/s

10 GHz 6.62 10-24 J (41.36 µeV) 6.62 10-24 W 9.4 10-24 W Hz-½

20 GHz 1.33 10-23 J (82.71 µeV) 1.33 10-23 W 1.87 10-23 W Hz-½

50 GHz 3.31 10-23 J (206.8 µeV) 3.31 10-23 W 4.69 10-23 W Hz-½

100 GHz 6.62 10-23 J (413.6 µeV) 6.62 10-23 W 9.4 10-23 W Hz-½

Photon Noise Equivalent Power (NEPg)

𝐸𝛾 = ℎn

𝑁𝐸𝑃𝛾 = ℎn 2𝑛
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• Function principle
▫ Absorption of photon with energy hn

▫ Electron in QD1 is excited to QD2 (tunneling)

▫ Electron can leave to drain lead and new electron enters from 

the source

▫ Then cycle can be repeated

▫ Current flow through the system

▫ d can be changed by electric field

Double quantum dot
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• Function principle:
▫ Breaking cooper pairs in a

superconductor (inductor) by photons

▫ Stored energy (inner inductance) is

changed

▫ Resonance frequency of the resonator

shifts

Microwave Kinetic Inductance Detector

Superconducting Gap Energy
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• Cooper pairs break into quasi-particles and tunnel over 

the barrier

• Using photon assistant tunneling for mixing

• Slope of I-V curve has sharp discontinuity: efficient

SIS-Mixer (Principle)
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• Mixer loss -> higher noise temperature

• Double-sideband feature -> looking at two frequencies 

at the same time

SIS-Mixer (Principle)

J. Zmuidzinas, „COHERENT DETECTION AND SIS MIXERS”, 2002
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• Detection of a broadband noise signal
▫ Frequency: 15 GHz

▫ Linewidth: 200 kHz

▫ Detection bandwidth: 10 kHz

Heterodyne Detection: First Tests
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Modulated signal @ 15 GHz with

0.8 10-19 W in 600 s and 77 K
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• Detection of a line signal

(Examples)
▫ Frequency: 15 GHz

▫ Detection bandwidth: 10 kHz

Heterodyne Detection: First Tests
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Real signal:


