

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Detector/Receiver "Cold" Measurements

MadMax-Workshop MPP Munich

O. Reimann for the MADMAX-Group

May 10, 2017

Outline

- Microwave radiometer (short reminder)
 - Comparison between photon- and heterodyne detection
- Current lab system
 - Schematic
 - First cold tests
- Conclusion

Photon Detection Setups

• Two principle ways:

- Photon counting
- Measurement of mean photon flux

Photon counting

- Limited by photon energy (Needs "high energy" photons)
- Energy (frequency) resolution is limited

Photon flux measurement

- Not limited by low energy photons
- Excellent frequency (energy) resolution (easily it can be better than 10⁻⁹), because of usually used "coherent" detection (normally heterodyne detection)

Photon Detection Setups

Photon counting:

Photon flux measurement:

MadMax-Workshop Nov. 21/22 2016

Choosing the Right Bandwidth

• What is the detectable noise temperature for a given system noise temperature (Dicke-formula):

$$\Delta T = T_{Sys} \sqrt{\frac{1}{\Delta f_F \tau} + \left(\frac{\Delta G}{G}\right)^2}$$

- Δf_F : Filter bandwidth
- τ : Averaging time
- T_{Sys}: Total system noise temp.
- Detectable noise power (assuming no gain fluctuation)

$$P_N = k_B T_{Sys} \sqrt{\frac{\Delta f_F}{\tau}}$$
 with $P_N = k_B \Delta T \Delta f_F$ and $\Delta G = 0$

• Averaging time for a given signal/noise ratio:

$$\tau = \left(s \ \frac{k_B \ T_{Sys}}{P_S}\right)^2 \Delta f_F \qquad \text{with} \ s = P_S / P_N$$

Choosing the Right Bandwidth

- What is the best bandwidth for line detection
 - Detectable background noise power increases with frequency (Square root)
 $k_B T_{Sys} \sqrt{\frac{\Delta f_F}{\tau}}$
 - Signal noise increases with frequency $k_B \Delta T \Delta f_F$ (Linear, if rect. distribution)
- Integration time: 1.6x10⁻²³ 50h Bandwidth should not be larger than line-width for best signal-noise ratio
 Mod solution 100h 1.4x10⁻²³ 200h 400h 1.2x10⁻²³ Signal 1.0x10⁻²³ 8.0x10⁻²⁴ 6.0x10⁻²⁴ 4.0x10⁻²⁴ Example Receiver: T_{Svs}=5K Signal linewidth limit 2.0x10⁻²⁴ Signal: 10⁻²³W (1photon/s @ 15GHz), 0.0 linewidth 10kHz, equal distributed 2.0k 10.0k 12.0k 14.0k 16.0k 18.0k 20.0k 0.0 4.0k 6.0k 8.0k Filter Bandwidth (Hz)

Slide 6

MadMax-Workshop Nov. 21/22 2016

Receiver

- Axion mass range: 40 μ eV ... 400 μ eV Frequency range: 10 GHz ... 100 GHz (λ = 3 cm ... 3 mm)
- Detection of signal line in frequency domain with $\Delta \nu_{\text{A}}$ = 10^{-6} ν_{A}

• • •

Low-Noise Amplifiers

- 2 different devices (Low Noise Factory, Chalmer University)
- Same characteristics @ RT but 1 is for cryo temperatures

6-20 GHz Cryogenic Low Noise Amplifier, 5K @ 8-10K 1-15 GHz Low Noise Amplifier, 75K @ RT

Slide 9

MadMax-Workshop Nov. 21/22 2016

- Inject fake axion signal with 1.2.10⁻²² W at LHe temp.
 - Frequency: 18.85 GHz
 - Frequency modulated with gaussian noise
 - Signal bandwidth: 8 kHz, Lorentz-shaped

- Inject fake axion signal with 1.2.10⁻²² W at LHe temp.
 - Frequency: 18.85 GHz
 - Frequency modulated with gaussian noise
 - Signal bandwidth: 8 kHz, Lorentz-shaped
 - Received signal after
 28h measurement
 (averaged signal):

MadMax-Workshop Nov. 21/22 2016

- Inject fake axion signal with 1.2.10⁻²² W at LHe temp.
 - Frequency: 18.85 GHz
 - Frequency modulated with gaussian noise
 - Signal bandwidth: 8 kHz, Lorentz-shaped
 - Received signal after
 baseline subtraction
 and gain correction:

Inject fake axion signal with 1.2.10⁻²² W at LHe temp.

MadMax-Workshop Nov. 21/22 2016

- Frequency: 18.85 GHz
- Frequency modulated with gaussian noise
- Signal bandwidth: 8 kHz, Lorentz-shaped
- X-Correlation signal with 8kHz width:

$$X(\tau) = \int s(t) T(t+\tau) d\tau$$

s: Signal T: Testfunction (Lorentz, Gauss, ...)

Highest peak

- Inject fake axion signal with 1.2.10⁻²² W at LHe temp.
 - Frequency: 18.85 GHz
 - Frequency modulated with gaussian noise
 - Signal bandwidth: 8 kHz, Lorentz-shaped

- Inject fake axion signal with 1.2.10⁻²² W at LHe temp.
 - Frequency: 18.85 GHz
 - Frequency modulated with gaussian noise
 - Signal bandwidth: 8 kHz, Lorentz-shaped
 - Why 8kHz Bandwidth?
 Algorithm is searching for best S/N-ratio:

- Inject fake axion signal with 1.2.10⁻²² W at LHe temp.
 - Frequency: 18.85 GHz
 - Frequency modulated with gaussian noise
 - Signal bandwidth: 8 kHz, Lorentz-shaped
 - Why 8kHz Bandwidth? Algorithm is searching for best S/N-ratio:

- Inject fake axion signal with 1.2.10⁻²² W at LHe temp.
 - Frequency: 18.85 GHz
 - Frequency modulated with gaussian noise
 - Signal bandwidth: 8 kHz, Lorentz-shaped

Additional Facts:

- Comparison with Allen's run statistic algorithm showed good agreement
- Cold tests are ongoing
 - 5.10⁻²³ W in 10kHz linewidth already reached within one week in 10K T_{sys} (Physical limit)
 - Different tests runs should give a clearer insight to possible problems (quantization noise, ...)

Conclusion

Receiver concept is OK

- Dead time 1,4%
- Sensitivity in warm and cold is OK

• Next Tests:

- Systematic cold measurements
- Better Antenna measurements
- Cold background measurements in cryostat

Spectral Power Density of (BB)-Noise

 Contribution of a detector: (no phase preservation)

$$E_N = \frac{h\nu}{e^{\left(\frac{h\nu}{k_B T}\right)} - 1} \qquad [E_N] = \frac{W}{Hz}$$

 Contribution of an amplifier or mixer: (phase preservation)

$$E_N = h\nu \left(\frac{1}{e^{\left(\frac{h\nu}{k_BT}\right)} - 1} + 1\right)$$

• Limit for low frequencies and/or high temperatures:

$$E_N = k_B T_{\text{Noise temperature}}$$

MadMax-Workshop Nov. 21/22 2016

Slide 21

Spectral Power Density of (BB)-Noise

- Example:
 - Spectral power density for different temperatures

MadMax-Workshop Nov. 21/22 2016

Noise Equivalent Power

- System noise temperature T_{Sys} and bandwidth Δf_{F} are difficult to measure for broadband detectors
 - Johnson noise
 - Phonon-electron coupling
 - Generation-recombination noise
 - Background noise
- \rightarrow Using noise equivalent power (NEP):

$$NEP_{\tau} = k_B T_{Sys} \sqrt{\Delta f_F}$$
 $[NEP_{\tau}] = \frac{W}{\sqrt{Hz}}$

Sometimes a little bit different NEP definitions are used, most of them have factor 2 or 2^{1/2} included
 (Because of 2 polarizations or time to bandwidth conversion)

$$P_N = k_B T_{Sys} \sqrt{\frac{\Delta f_F}{\tau}}$$

...

MadMax-Workshop Nov. 21/22 2016

Broadband detectors

- Types of broadband detectors
 - Bolometers
 - Microwave kinetic inductance detector (MKID)
 - Double quantum well detectors
 - Transition edge sensors (TES)
- Usually they work good only at higher frequencies (> 50 ... 100 GHz)
- Often the devices are background limited
 - Example: Background temperature 300 K, bandwidth 50 GHz \rightarrow NEP = 9.2 10⁻¹⁶ W Hz^{-1/2}
- Temperature and bandwidth can be reduced, but then again the other noise sources start to dominate (see later)!

MadMax-Workshop Nov. 21/22 2016

Comparison: Heterodyne \leftrightarrow Direct Det.

Noise equivalent power of a heterodyne system:

[1] K.C. Fong and K.C. Schwab, "Ultra-sensitive and Wide Bandwidth Thermal Measurements of Graphene at Low Temperatures", 2012

MadMax-Workshop Nov. 21/22 2016

Heterodyne Detection: Real Devices

• Noise temperature limit for InP devices:

• Mainly phonon self heating \rightarrow Inner bulk black body radiator

InP-HFET, Bryerton et. al. "Ultra Low Noise Cryogenic Amplifiers for Radio Astronomy", 2013

Shi, et. al.

A 100-GHz Fixed-Tuned Waveguide SIS Mixer Exhibiting Broad Bandwidth and Very Low Noise Temperature, 1997

InP-HEMT Our amplifier, LNF

First Cold Measurement

- First quick and dirty test:
 - Very simple test in LHe-dewar
 - Amplifier at LHe-temperature (4.1K)

Room for improvement!

MadMax-Workshop Nov. 21/22 2016

Run Optimization

- Measurement time vs. analysis threshold level and power boost factor:
 - 80 disks, LaAlO₃, T_{sys}=8K, effectivity: 75%, 1day adjustment time

Sensitivity in terms of Axions

Axion mass (eV)

Photon Noise Equivalent Power (NEP $_{\gamma}$)

Photon energy: Noise equivalent power "of a photon":

$$E_{\gamma} = hv$$

 $NEP_{\gamma} = h v \sqrt{2n}$

n:

Mean photon flux (background + signal) in 1/s

Frequency v	Photon Energy E_{γ}	1 γ/s =	NEP _{γ} for 1 γ /s
10 GHz	6.62 10 ⁻²⁴ J (41.36 µeV)	6.62 10 ⁻²⁴ W	9.4 10 ⁻²⁴ W Hz ^{-1/2}
20 GHz	1.33 10 ⁻²³ J (82.71 µeV)	1.33 10 ⁻²³ W	1.87 10 ⁻²³ W Hz ^{-1/2}
50 GHz	3.31 10 ⁻²³ J (206.8 µeV)	3.31 10 ⁻²³ W	4.69 10 ⁻²³ W Hz ^{-1/2}
100 GHz	6.62 10 ⁻²³ J (413.6 µeV)	6.62 10 ⁻²³ W	9.4 10 ⁻²³ W Hz ^{-1/2}

Double quantum dot

- Function principle
 - Absorption of photon with energy hv
 - Electron in QD1 is excited to QD2 (tunneling)
 - Electron can leave to drain lead and new electron enters from the source
 - Then cycle can be repeated
 - Current flow through the system

• δ can be changed by electric field

Microwave Kinetic Inductance Detector

• Function principle:

- Breaking cooper pairs in a superconductor (inductor) by photons
- Stored energy (inner inductance) is changed
- Resonance frequency of the resonator shifts

Superconducting Gap Energy

<u>Aluminum</u>	3.4×10 ⁻⁴ eV
Cadmium	1.5×10 ⁻⁴ eV
<u>Gallium</u>	3.3×10 ⁻⁴ eV
Indium	10.5×10 ⁻⁴ eV
Lanthanum	
<u>β-lanthanum</u>	19×10 ⁻⁴ eV
Lead	27.3×10 ⁻⁴ eV
Mercury	
<u>α-mercury</u>	16.5×10 ⁻⁴ eV
Molybdenum	2.7×10 ⁻⁴ eV
<u>Niobium</u>	30.5×10 ⁻⁴ eV
<u>Tantalum</u>	14×10 ⁻⁴ eV
<u>Thallium</u>	7.35×10 ⁻⁴ eV
Tin	
white tin	11.5×10 ⁻⁴ eV
Vanadium	16×10 ⁻⁴ eV
Zinc	2.4×10 ⁻⁴ eV

Slide 32

MadMax-Workshop Nov. 21/22 2016

SIS-Mixer (Principle)

- Cooper pairs break into quasi-particles and tunnel over the barrier
- Using photon assistant tunneling for mixing
- Slope of I-V curve has sharp discontinuity: efficient

MadMax-Workshop Nov. 21/22 2016

SIS-Mixer (Principle)

- Mixer loss -> higher noise temperature
- Double-sideband feature -> looking at two frequencies at the same time

J. Zmuidzinas, "COHERENT DETECTION AND SIS MIXERS", 2002

Detection of a broadband noise signal

- Frequency: 15 GHz
- Linewidth: 200 kHz
- Detection bandwidth: 10 kHz

MadMax-Workshop Nov. 21/22 2016

- Detection of a line signal (Examples)
 - Frequency: 15 GHz
 - Detection bandwidth: 10 kHz

Real signal:

@ Signal Analyzer (10⁻¹³ W)

Power (5,17

5,21

5,20 5,19

5,18

5.16

MadMax-Workshop Nov. 21/22 2016