
# 1st proof of principle tests tiling/positioning

Chris Gooch MPI für Physik, München

gooch@mpp.mpg.de









# Tiling

#### **Motivation**

 1m diameter dielectric is not currently available → Tiling

#### <u>Aim</u>

 Cut dielectric into smaller tiles then fix together again





# Tiling

#### **Motivation**

 1m diameter dielectric is not currently available → Tiling

#### <u>Aim</u>

 Cut dielectric into smaller tiles then fix together again

#### First attempts - LaAIO3

- Lanthanum aluminate test on 1mm thick disc
  - Laser cutting resulted in splintering (our laser
  - Scoring/breaking also not successful



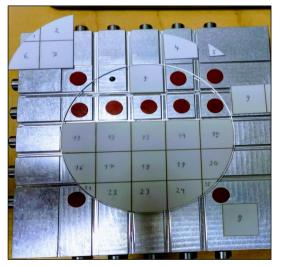


# Tiling

#### **Motivation**

1m diameter dielectric is not • currently available  $\rightarrow$  Tiling

#### Aim


Cut dielectric into smaller tiles • then fix together again

#### First attempts - LaAIO3

- Lanthanum aluminate test on 1mm thick disc
  - Laser cutting resulted in splintering (our laser)
  - Scoring/breaking also not successful

#### First attempts - Al2O3

- Ceramic test on 0.6mm thick disc
  - Laser scoring and breaking successful
  - Ø 100mm disc made of 25 pieces glued with GP11





Tiles kept in place on suction plate Held together with aluminium support ring

Left: Tiled ceramic in holder Middle: Original ceramic for comparison Right: Saphire in holder



1st proof of principle tests tiling/positioning Chris Gooch





### Positioning – A new concept

#### Current set-up(s)

- Discs on rails, moved by precision motors
  - So far works well, however, this idea is not fixed, we must remain open to other ideas...

#### **Challenges**

- 80 x 1000mm discs
- Magnetic field
- Cryogenic temperatures
- µm placement precision
- ???





# Positioning – A new concept

#### Current set-up(s)

- Discs on rails, moved by precision motors
  - So far works well, however, this idea is not fixed, we must remain open to other ideas...

#### <u>Challenges</u>

- 80 x 1000mm discs
- Magnetic field
- Cryogenic temperatures
- µm placement precision
- ???

#### New idea - "Cable car"

- Discs supported and moved on lengths of fibre e.g.
  - Each disc attached to 3 lengths of fibre
  - Fibres under tension to support weight and movement
  - Precision motors move the fibres and thus, the discs

#### Advantages

- Fibre can be suitable for magnetic and cryogenic environment
- Fibres can be thin and introduce relatively little mass into the setup
- Flexibility of motor placement

#### Disadvantages

- 3 fibres per disc = 240 fibres
- Each disc positioned via 3 separate motors – positioning/reproducibility difficulties?
- Temperature sensitive



1st proof of principle tests tiling/positioning Chris Gooch





### Positioning – A new concept

#### **First Tests**

#### **Stretching + Tensile Tests**

- Carbon fibre roving
  - Tears under strain (30kg)
- Aramid fibre
  - Does not tear (up to 80kg)
  - Test with 2m pre-stretched fibre (60kg) → ~0.3mm temperature dependant deviation with 40kg (over several days)

#### With motor movement

 µm movement/reproducibility seems possible at this time







### Going forward...

#### **Tiling**

- Plan for Hamburg to take over
  - Munich can still provide support/expertise

#### **Positioning**

- Munich will continue tests on cable car concept
- Motors
- Other concepts





### Going forward...

#### <u>Tiling</u>

- Plan for Hamburg to take over
  - Munich can still provide support/expertise

#### **Positioning**

- Munich will continue tests on cable car concept
- Motors
- Other concepts

Nothing is set in stone... New ideas are welcome... More ideas means better adaptability going forward



