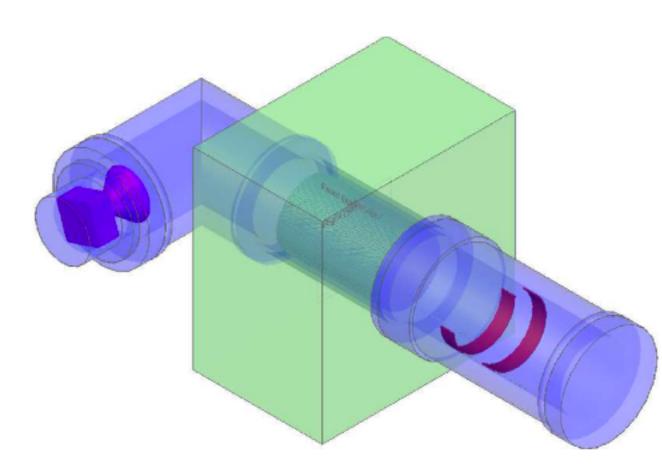
MADMAX @ UniHH

Erika Garutti, Alexander Schmidt Universität Hamburg

> Kick-off meeting Saclay, 10-11/05/2017

The Uni. Hamburg group


Name	Title	Task
Erika Garutti	Group leader	Mechanics / integration
Alexander Schmidt	Moving to Uni. Aachen	Simulation studies
Michael Matysek	Mech. Eng.	Mechanics
Stephan Martens	Phys.	Tiling test
Nils Böhmer	Elec. Eng.	Tiling test / receiver installation
Jan Schütte-Engel	PHD student	Simulation studies (Jul. 17)
Sara Cerioli	PHD student	Tiling test (Aug. 17)
NN	Post-doc	

Available infrastructures:

- mechanical workshop (high precision mechanics)
- Iarge experimental hall (from end of 2018)
- liquid helium (dewar delivery / uni. production)

Progress so far

- Acquire financial support for lab equipment & experimental hall
- Started purchase Network analyser & dielectric disks
 - Goal: Set-up system for tiling characterisation (a-la MPP)
- Initiated mechanical considerations for prototype booster
 - size of Phase-I experiment
 - cryogenic and power requirements
 - design of cryogenic enclosure (w/o and w/ magnet)
 - booster mechanics
- Writing a proposal for MADMAX @ DESY (Phase-II)

Goals of the prototype booster (Phase-I)

- Test the scaling of the prototype at MPP Munich to a full 80 discs booster system
- Test the mechanical alignment system
- Investigate behaviour of different dielectric material in a cryogenic environment (and with high magnetic field)
- Check the agreement of simulations & measurements, including boost factor, transmissivity and reflectivity
- Study the required precision and stability of the mechanical alignment system and flatness of disc surface
- First test with a 4 T magnet
- First physics run with reduced sensitivity to obtain exclusion limits on Axion models

Time line of experiment

Phase-I (Prototype booster)

2017-2021

Requirements:

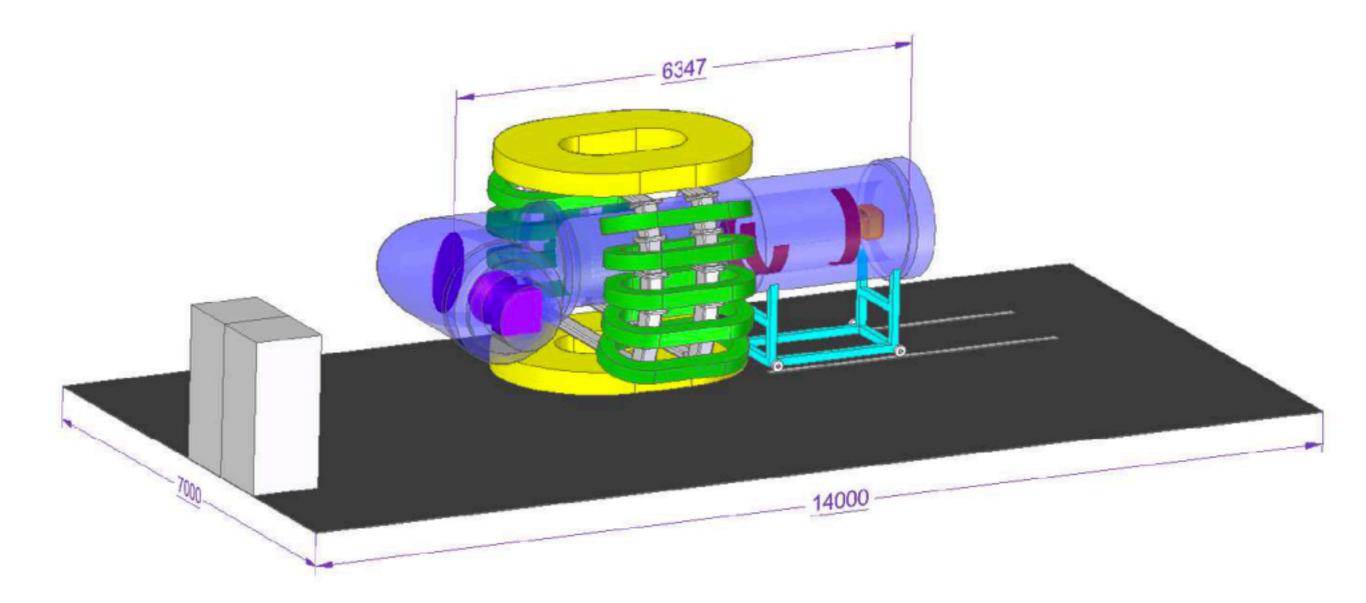
- Cryogenic vessel enclosure for prototype booster (~10m long, 30 cm diameter). Outsourced design.
- Cryogenics: Liquid helium transport with dewar
- 4T superconductive magnet (produced by Saclay)
- Expected consumption: 1000 kW / year (~1 kEuro)

Proposed location:

Uni.HH former cyclotron hall (bunker)

Phase-II (MADMAX experiment)

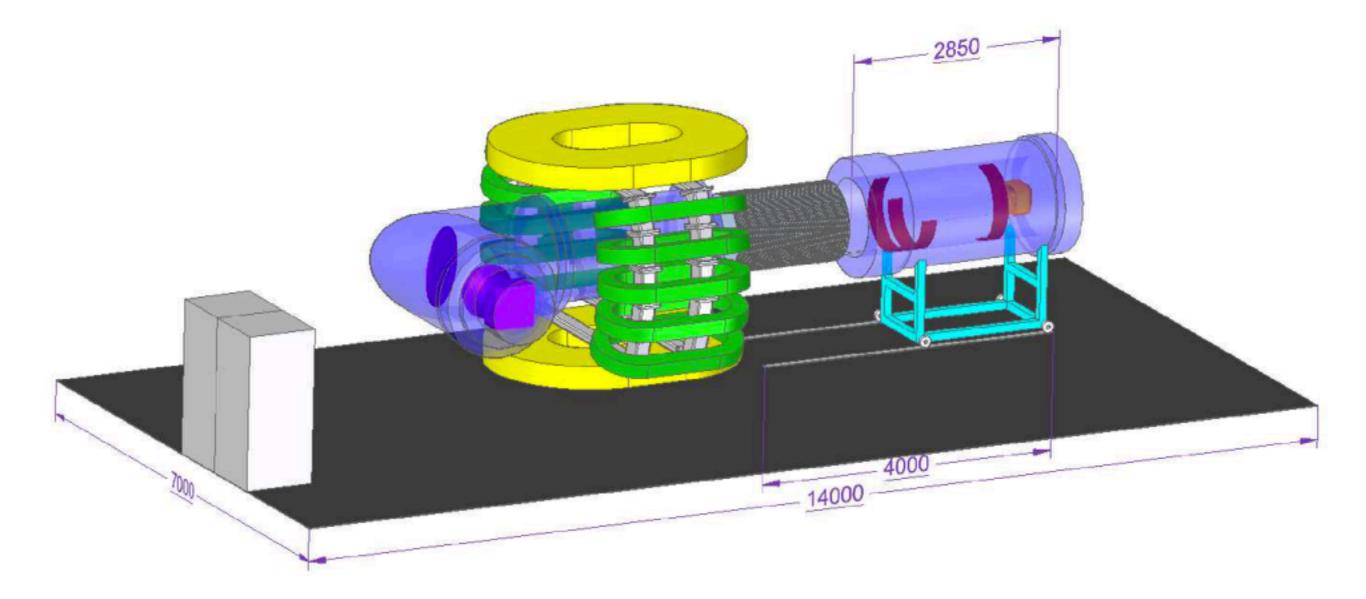
Requirements:20 T crane

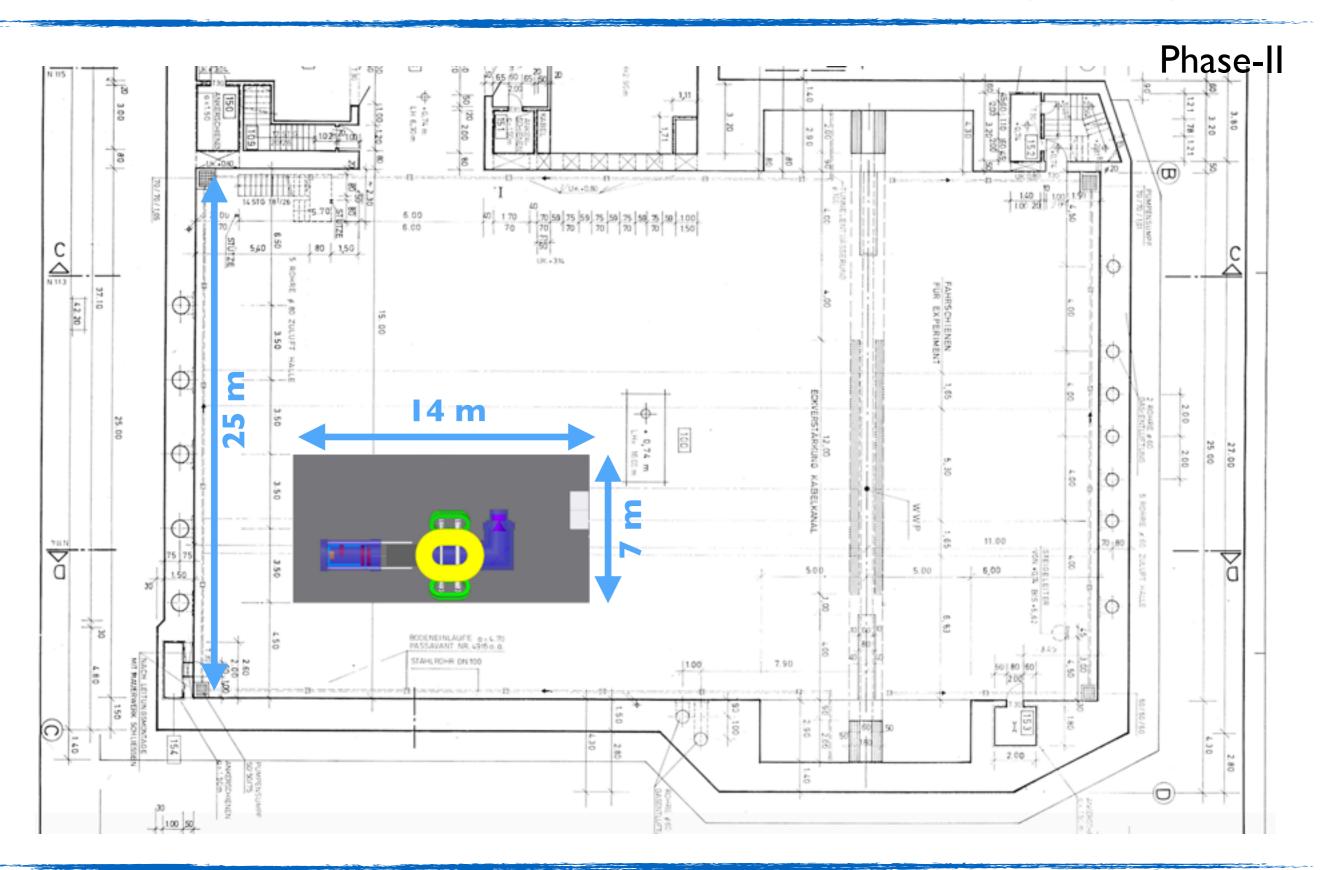

- Cryogenic vessel enclosure for prototype booster (~10m long, 100 cm diameter). Outsourced design.
- Cryogenics: Liquid helium transfer line
- IOT superconductive magnet (produced by MADMAX consortium)
- Expected consumption: 1000 kW / year (~1 kEuro) (+ transfer line, TL)
- Stabilised temperature controlled 23 deg. / humidity control

Proposed location:

- PLAN A: New location (~200m from cryo plant, TL ~ 200 kEuro / year)
- PLAN B: HERA North Hall (~4 km from cryo plant, TL ~ I kEuro / year)

MADMAX: operation


Phase-II


MADMAX: booster installation

Phase-II

Discuss installation procedure

MADMAX in the DESY North Hall (PlanB)

MADMAX in the DESY North Hall

Phase-II

Proposal

FOR A NEW EXPERIMENT ON THE SEARCH FOR DARK MATTER AXIONS AT DESY

Jörn Schaffran, Axel Lindner, Alexander Schmidt, Erika Garutti, Michael Matysek, XYZ

costs of operation

	number	power	power	
description	or length	[W/m]	[W]	comments
transfer line 80K	1 500	1	1 500	
transfer line 4K	3 000	0.2	600	
LHC magnet 80K	6	8	48	assumption as
LHC magnet 4.5K	6	0.3	1.8	discussed in text

	equiva	alent	primary	power	
description	power	[W]	power [kW]	300 days [kW]	costs 300 days
transfer lines (west-north)	6	584.4	205.3	$1\ 478\ 250$	147.8
distribution system		300	90	$648 \ 000$	64.8
MADMAX	???	4.5	1.4	9720	1
total					213.6 kEUR

Table 2: Description costs for operation of the MADMAX cryostat and magnet.

List of open questions (Phase-I / Phase-II)

- requirements on floor vibration
- requirements on RF screening
- magnet power consumption
- magnet liquid helium volume
- • •
- installation procedure

Backup

Preparations in the course of the ALPS-II Project (initia	al costs)
---	-----------

_			<u>,</u>	-
description	nr.	$\cos t/{\rm piece}$	total cost	comments
valves	16	5000	80 000	controller, regulator, valve socket
controllers, sensors	1	20000	20000	
bypass	2	20000	40 000	bypass until used by MADMAX
vacuum system for boxes	1	30 000	30 000	
total			$170\ 000$	

Link to the MADMAX magnet (later)

description	nr.	cost/piece	total cost	comments
transfer lines	20	5000	100 000	depends on magnet design
connection for transfer line	1	20000	20000	
cooling system	?	?	?	depends on type of cooling
warmgaspanel (?)	12	3 000	36 000	power lines, ramping circles
panel for power lines	2	1 500	3 000	
distribution box - valve	12	35000	$420\ 000$	for magnet/cryostat
transfer line (experiment)	30	1 200	36 000	connection distribution box
connection transfer line	6	20 000	$120\ 000$	2 cryostats + 1 magnet
total			735000	

total	905 000
-------	---------