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Dark Matter Axions

• The axion is highly non-relativistic, but not stationary.

• As the axion acts as a classical field, the axion’s velocity 
gives a spacial variation of the axion’s phase - 
physically large detectors may be sensitive to this 
change.

• The goal of MADMAX is to build a device that can be 
physically much larger than a traditional cavity… do we 
need to worry about the axions velocity?



Axion-electrodynamics

• Axions and ALPs interact with photons through an 
anomaly term

• This coupling is tiny, but still important



Axion-Photon Mixing

• By providing an external magnetic field, we can induce 
a mixing between axions and photons. 

• Alignment of the axion with the                             
magnetic field matters

φ 
k 

ℓ 
t 

b Be 



Axion-Photon Mixing

• Ignoring any dynamical longitudinal photon modes (i.e., 
longitudinal plasmons), this mixing gives rise to a 
“photon-like” state and an “axion-like” state,



Axion-Photon Mixing

•  The “axion-like” mass eigenstate means that the axion 
gives rise to a small E field aligned with the magnetic 
field

• The axion now has a very transverse small H field, 
suppressed by the velocity.



Single Interface

• As in the zero velocity case, the axion induced E and H 
fields experience a discontinuity when encountering a 
change in dielectric media. 

• Maxwell’s equations imply that the total parallel E and H 
field must be continuous — regular EM waves must be 
emitted. See arXiv:1307.7181 for more on dish antennas.



Single Interface

• Assuming that the magnetic field and interface are 
parallel, then the emitted waves are given by

• The first term is the same as for the zero-velocity case, 
but now the H-field of the axion also contributes. 



Dielectric Haloscopes

• The idea of MADMAX is to enhance the conversion of axions to 
photons by using many dielectric disks — a dielectric haloscope.

• This means that we will need to worry about the change of phase 
of the axion over the haloscope. 
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Transfer matrix formalism
• Encode every interface and distance as a matrix

• Add in a new source term at each interface to account 
for the axions, but with a change in phase from the 
axion velocity along the haloscope



Simple Resonant Cavity

• Simple analytic case: mirror and 
single disk arranged for a resonance.

• If the disk spacing is small, no 
significant velocity effects 
regardless of resonant conditions.



Simple Resonant Cavity

• What happens if we increase the disk spacing?

• Velocity effects start becoming important around 15-20% of the 
axion’s de Broglie wavelength

• For v~10-3 the Compton wavelength is smaller by a factor of 1000
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Transparent Mode

• Nice analytic test bed for studying effects in dielectric haloscopes

• Equally spaced disks, each with a half wavelength thickness and 
spacing gives a transparent device, so the waves generated at 
each interface simply add.



Transparent Mode

• At the transparent frequency, we can find a closed form for the 
boost amplitude for N disks.

• As the phases come in with factors of Nv, even though the axion 
velocity is small these can become very significant effects for 
large N.

• Note that N is simply a proxy for the linear distance of the 
dielectric L~Nƛ/2.



Transparent Mode

• Velocity effects start to be become important when the 
haloscope is around 20% of the axion’s de Broglie 
wavelength.



Realistic example: 80 Disks

• The transparent mode suggests that the axion’s velocity can be 
neglected for MADMAX, we should check this explicitly.

• Recall: MADMAX is to have ~80 disks and will be optimised for 
broadband solutions.

• We used the area law to extrapolate from 20 disks to 80 disks: expect 
β~270.

16 18 20 22 24

1.0

1.5

2.0



Realistic example: 80 Disks

• This 80 disk solution achieves a power boost within 
~5% of expected (~70,000).

• Still a good correlation between the boost factor and 
reflectivity. 



Sensitivity to Error

• With this solution we can make a rough check of the 
sensitivity to mispositioning errors that we expect.

• Errors of a few μm seem to be tolerable without error 
correction. 
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Sensitivity to Error

• But mispositioning also effects the reflectivity!

• Should be possible to use this to reject bad positions, 
and to reconstruct the actual boost factor (see Stefan’s 
talk).
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Velocity effects

• The axion velocity is entirely negligible!

• Actually less sensitive than the transparent mode due to 
a lack of symmetry…
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Directional Sensitivity

• Velocity dependence of dielectric haloscope depends 
primarily on vx. 

• The transverse velocities only enter the axion’s frequency, 
so effect the boost factor at Lv2 at most (where L is the 
haloscopes length).

• However, transverse velocities effect the emitted angle of 
photons, and the phase of the axion across the disk.

• This means that in principal a dielectric haloscope can be 
made to have directional sensitivity. 



Directional Sensitivity

• In the high mass range of MADMAX, much of the 
magnet’s volume would be unused.

• Potentially add disks, or in the event of discovery space 
the disks out further.
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Conclusions

• Existing formalisms can be extended to include the axion’s 
velocity.

• 1D velocity effects are negligible for devices less than ~20% of 
the axion’s de Broglie wavelength, such as an 80 disk 
MADMAX.

• Projections based on ~20 disk solutions seem to be accurate.

• Second generation experiments, or possible high-mass 
extensions of MADMAX could be in principal sensitive to the 
axion’s velocity in a directional way, giving a sizeable diurnal 
modulation. 



Non-trivial Velocity Dispersions

• Unless dark matter is discovered, there is significant 
uncertainty to the velocity dispersion of the axion.

• Power generated is a convolution of the boost factor and 
axion density,
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