

Theory:		
	Theoretical Show stopper?	mid 2017
	Influence of Clustering?	
	Classicality issue?	
	Phase space argument (gammas not normal to 10^-3 deg)	end 2017
	Influence of "beam shape"	
	Do all disks have to be magnetized?	

Experiment:			
Magnet			
	What is the design (B^2 A, Length)?	Mid 2018	
	Prize and Time line?	Mid 2018	
	Fringe field?	Mid 2018	
	Homogeneity?		
Booster			
	Noise tempreature and real temperature?		
	Tiling possible to 1m ² with LaAlO3?		
	Precision of tiles?		
	Influence of Tiling on tan delta		
	Loss rate low enough?		
	Precision of disc placement good enough (extra discs)	apolated to many	

Experiment :						
	Receiver					
	Max. tempera	ture				2017
	Technology for	or > 40 GHz?				2018-2020
	What resoluti	on is needed fo	r amplitude meas	sureme	nt	
	(16bit as done at the moment? Could be lower?)					
	What frequen	cy-bandwidth i	s needed?			
	Interface Boo	oster-Receiver				
		Noise temperat	ture of mirror, fee	edthrou	ıgh, ho	rn as fct of
		real temperatui	re?			

Experiment				
	Disc position	ning		
		How le	ong does the boos	ster re-alignment last?
	Calibration	receivo	er and booster	
		How to	o calibrate?	
		How o	often to	
		calibra	ite?	
	Prototype Te	est		
		Succes	ssful?	

Tasks	MPP, ZU, ?
Theory	
Mini Cluste	ring
Influence o	f Clustering on search strategy
Influence o	f Magnet length
Influence o	f "beam shape"
Phase space	argument (photon emission angle variations)

Tasks	MPP, U	нн, ??		
Proof of Principle Experiment				
Five disc Bo	oster	1		
20 disc Boos	ster	work in progress		
Radiometer		1		
Discs				
Choice of material				
Tiling				
Fake Axion calibration				
Antennas and mirrors				

Tasks MPP, UHH, ??
Prototype booster
Design of prototype
Encapsulation (suitable for B-field)
Booster
Cryogenics for booster (see below)
Production of Prototype
Characterization
Needed Temperature of components known
Final Booster
Discs
Positioning System
Calibration/ Fake Axion

Tasks	MPP, Saclay	
Magnet		
Start innov	ation partnershi	ip
contest fo	r participation	
Evaluation	n of applicants	1
Preparation	on of offers	✓
Negotiatio	ons	✓
Evaluation	n of final offer	
Start of in	novation partne	ership
Design Stud	ly	
Decision on	Magnet type	
Build proto	type	
Build final r	nagnet	

Tasks	MPP, MPIfR, ??		
Receiver			
Low Fre	equency (10-40 GHz)	1	
High Fro	equency (35 - 100 GHz)		

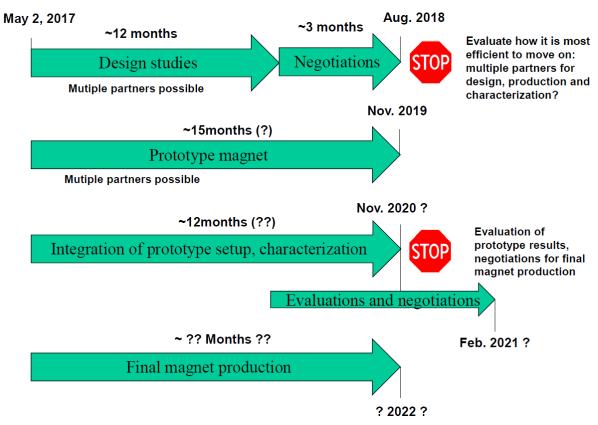
Work Packages:

Tasks	UHH, DESY, ???					
Cryogenic Syste	Cryogenic System(s)					
Design of cryc	genic components					
Mirrors and Fee	edthroughs					
Site infrastructi	ure					
Definition of o	criteria for site					
Selection of p	otential sites					
Measurement	ts at good sites					
Decision on si	te					
Preparation o	f contracts at site					
Planning of sit	te infrastructure					
Preparation o	f site infrastructure					
Interfaces and i	ntegration					
Computing and	Analysis					
Slow Control						

From the MADMAX persepctive:

Work Packages:

Tasks
Collaboration and Management
Committment Phase
Commitments above critical threshold
Collaboration Structure
MoU
Definition of management structure
MoU signed
Finances



From the general persepctive:

Overall Time Schedule:

Will be driven by magnet time schedule

→ Start measurement in 2022(?) (with MADMAX magnet)

https://www.newscientist.com/article/mg23230974-700-physics-tweak-solves-five-of-the-biggest-problems-in-one-go/

http://www.nature.com/news/axion-alert-exotic-particle-detector-may-miss-out-on-dark-matter-1.20925

http://www.deccanherald.com/content/581069/an-exotic-article-detector-may.html

http://www.n24.de/n24/kolumnen/Prof-Ulrich-Walter-Wissenschaft/d/9390822/der-durchbruch-bei-der-dunklen-materie-.html

From the MADMAX persepctive:

	1. Magnet	1. Prototype magnet	Magnet Coils	
	Critical Decisions:		Shield against fringe field	
	Which technology?		Magnet Cryogenics	
		2. Final magnet		
	2. Booster	1. Booster Seed setup	Discs	Disc holders/Support
	Critical decision:	Main tasks:		Tiled discs
	Temp. booster needs	Proof of principle	Positioning System	Disc support
	to be cooled to			Motors
		Influence of tiling		Transmission Motor-Disc
	Tiling scalable to 1m			Support-Rails
		Booster noise temperature		Disc position control
			Calibration/Fake Axion	
		2. Booster Prototype	Discs	Disc holders/Support
		Main tasks:		Tiled discs
			Positioning System	Disc support
		Scalability to more disks		Motors
		and bigger diameter		Transmission Motor-Disc
				Support-Rails
×		Cooling technology		Disc position control
ا گ			Calibration/Fake Axion	
Mad Max			Cryogenics	
ac		3. MadMax Booster	Discs	Disc holders/Support
ΙΣ				Tiled discs

From the MADMAX persepctive:

Mad Max

•		
3. Booster to	Parabolic mirror	
Radiometer interface	Feeddthrough to cryostat	
	Horn antennas	
4. Radiometer	Detector	
	Heterodyne mixing	
	DAQ	Software
	Cryogenics	
5. Experimental Hall	Power	
	Technical gases	
	LHe lines	
	Support	
6. Software	Analysis	
	Slow Control	

