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Workflow

* Data first generated as .root files with information of energy deposit on calorimeters,
subsequently converted to HDF5 format

* Using a script to find the barycenter for events in HCAL and ECAL and create files for training

Extracted (ix, iy, iz) —indices in sub-detector that are used to number cells in the calorimeters, (X, Y, Z) — absolute spatial
coordinates and energy for each event

Calculated weighted average in terms of energy to find barycenter of event in ECAL, get a 25x25x25 array of energies
around those coordiantes

Pass Y, Z coordinates of ECAL barycenter to HCAL and get the surrounding 5x5x60 array of energies
HCAL and ECAL event saved as “images” using two separate keys in

“Target” key created to include information of the particle id, energy of hit, and momentum 3-vector

* Using data generator to feed in data to networks, with the capability to dynamically vary batch

sizes

Data generator is useful for our large dataset — instead of loading everything on to memory only one file is open at a time

Events fed in individually till batch size is satisfied



Network Topologies

4 different 3D ConvNets:

XY Scan (Full depth on Z axis), filter dimensions - (5,5,25)
(summary of network shown alongside)

XZ Scan (Full depth on Y axis, filter dimensions - (5,25,5)
YZ Scan (Full depth on X axis), filter dimensions - (25,5,5)

Other models (filter dimensions - (5,5,5) & (4,4,5).

convolution3d_input_2 (InputLayer)

output: | (None, 1,

input: (None, 1, 25,
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convolution3d_2 (Convolution3D)

input: (None, 1, 25,
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. . input: | (None, 25, 21, 21, 1)
maxpooling3d_1 (MaxPooling3D)
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Loss Curves

* Models trained with early-stopping (patience =
10 epochs)

* The xy,xz scan models train over 120 epochs.

* The old models with filter shapes of (4,4,5) &
(5,5,5) train till 60 epochs and have final
training loss nearly equal to the XZ Scan

* The yzscan model does not train well and
hardly goes near 40 epochs

* The training losses also differ by a lot
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Results: ROC Curve
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Results: Area Under ROC Curve

Zoomed in (but requires rebinning for
better understanding of plot)
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Results: Variation of FPR with Energy
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Discussion

» Classification of electrons vs. charged pions may be too easy a problem for topologies used

* Spread of performance is being studied currently with 5-fold cross-validation, for the xy, yz,
xz-scan models

* Need to look performance as a function of the amount of data used in training (given a
fixed test sample) to get idea about over/under complexity of models

* Previous attempt at photon vs. neutral pion discrimination (using both ECAL and HCAL
data) with branched convolution topologies gave unsatisfactory results — this needs to be
attempted again with a revised approach

* Development of mpi-learn class to function in tandem with custom data-generator for
networks to parallelize learning over multiple GPUs — will allow to tackle photon
identification problem which requires more complex topologies, in addition to speeding up
any learning in general



Future Work

* With around 20 trainings for each model we can observe if there is a Gaussian-
distributed performances or not

e Trydifferent training splits (0.01, 0.1, 0.25, 0.5, etc.) for data — all aforementioned
models were trained on 0.7 of the available data, 0.2 was validation set and 0.1 was test
set



Backup Slides



Current Dataset (e vs ch. Pi)

* Information of showers from single particles hitting ECAL surface

» Data stored as energy deposits per pixel around barycenter, in barrel region of
calorimetry over a flat energy spectrum between 10-510 GeV



Photon identification slides, as backup info



Problems we are addressing with this project

* Energy Regression

* Using neural networks (NN) to carry out regression over a discrete energies(10-109GeV) and,
more recently, continuous spectrum of energies (10-500 GeV)

* Relevantinputs, as per current dataset, provided as simulated photon and pion energy
showers (events) recorded on highly granular Electromagnetic and Hadronic Calorimeter
(ECAL, HCAL henceforth) geometries

* Relevant output — energy of an identified photon hit

* Particle Classification

* |dentification of particles, as either photons (signal) or pions (background), in ECAL and HCAL
events

 Simultaneous Regression and Classification
* Tackling both regression and classification using branched network topologies

17 August, 2016



Experimental Setup

Titans machine at Caltech
e Two available NVIDIA GTX TitanX

CSCS (Swiss National Supercomputing Centre) GPU cluster
* Multiple available NVIDIA Tesla K20X

* Slower than TitanX’s, leading to longer training times, but multiple jobs can be run at same time due to good
distribution of workload

All work carried out using the Keras deep learning library for Python, running on Theano backend

Some prototyping and inference work done on titans before and after extensive training on CSCS

LCD Datasets generated (by Maurizio) consisting of single-particle showers in barrel of 3D
geometry of high-granularity Linear Collider Detector ECAL, and HCAL

17 August, 2016



Workflow

» Data first generated as .root files with information of energy deposit on calorimeters,
subsequently converted to HDF5 format

* Using a script to find the barycenter for events in HCAL and ECAL and create files for training

* Extracted (ix, iy, iz) —indices in sub-detector that are used to number cells in the calorimeters, (X, Y, Z) — absolute
spatial coordinates and energy for each event

* (Calculated weighted average in terms of energy to find barycenter of event in ECAL, get a 24x24x25 array of
energies around those coordiantes

* PassY, Z coordinates of ECAL barycenter to HCAL and get the surrounding 4x4x60 array of energies
* HCAL and ECAL event saved as “images” using two separate keys in

* “Target” key created to include information of the particle id, energy of hit, and momentum 3-vector

* Using data generator to feed in data to networks, with the capability to dynamically vary batch
sizes

* Data generator is useful for our large dataset — instead of loading everything on to memory only one file is open at
atime

* Events fed in individually till batch size is satisfied



LCD Dataset

* Previous dataset included events in ECAL, at discrete energies over range of 10-109 GeV, and only
the regression problem was addressed on this dataset

e Current dataset contains information of energy deposits in barrel region, of ECAL and HCAL, over a
flat energy spectrum between 10-500 GeV, from single particles hitting ECAL surface and
subsequently showering

* Including HCAL information is important to image the tail of hadron showers, and see more of higher energy
electron showers continuing into the HCAL from the ECAL

* Increased generalization of methodology
* More data is extremely important from the deep learning’ point of view
* Total of about 500,000 photon and pion events each
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Data Pre-Processing for Training

* |nitial dataset was 50 photon and 50 pion files, each with a flat energy spectrum, of about 10,000
events per file

* Photon and pion files were merged and 100 files of 10,000 events each were created

* Files were shuffled 500 times, opening two random files at any given time and using the same
random seed to shuffle events to not lose correspondence between images and targets

* Regression+Classification and Classification only models were trained on these shuffled files

* Regression only models were trained on files containing only photon events

17 August, 2016
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Network topologies (contd.)
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Network topologies (contd.)
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Training Losses (really funky loss plots, need to try again!)
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Training losses

Regression+Classification model’s

regression loss
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Initial results
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Classification performance

False positive rate
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topologies trained on CSCS

* Best signal to noise ratio achieved: ~82% efficiency at

~20% false positive.
* Needs much more tweaking
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Regression performance as a function of energy
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Next Deliverables and Work Going Forward

* Develop new topologies to achieve better performances

» Develop new classes to test regression performances over flat energy spectrum

Plot median relative error, zscore, percentage uncertainty of predictions and residual

* Develop new early-stopping classes

Some models definitely seem to not be training for enough epochs, especially the Regression+Classification models

Keras’ vanilla EarlyStopping does not do a good enough job, since it monitors total validation loss of both outputs for
dual output models

New EarlyStopping would need to monitor validation losses of both outputs, find a good balance to prevent over-
fitting one branch with a higher magnitude of loss at the cost of under-training the other with smaller loss values

17 August, 2016



