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Introduction

• The Wilsonian RG is controlled by first order flow equations of the form

dgi
dt

= βi(gi) , t = logµ

• Despite our knowledge, there are many aspects of QFT RG flows (in

the most symmetric case: unitary relativistic QFTs), that are still not

understood.

♠ It is not known if the end-points of RG flows in 4d are fixed points or

include other exotic possibilities (limit circles or “chaotic” behavior)

♠ This is correlated with the potential symmetry of scale invariant theories:

are they always conformally invariant? (CFTs)?

• In 2d, the answer to this question is ”yes”.

3



♠ Although in 4d this has been analyzed also recently, there are still loop-

holes in the argument.
El Showk+Rychkov+Nakayama, Luty+Polchinski+Rattazzi,

Dymarsky+Komargodksi+Schwimmer+Theisen+Farnsworth+Luty+Prilepina

♠ In 2d it is a folk-theorem that the strong version of the c-theorem is

expected to exclude limit cycles and other exotic behavior in Unitary Rela-

tivistic QFTs.
Zamolodchikov

♠ In 4d, we have the weak form of the a-theorem, proved recently.
Komargodski+Schwimmer

♠ We also have a perturbative proof of the strong version, but with impor-

tant subtleties.
Osborn, Jack+Osborn

♠ The relation between flows of couplings (β-functions) and the trace of

the stress tensor is subtle.
Osborn, Fortin+Grinstein+Stergiou
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♠ The subtleties include the possibility that limit cycles appear, but they

are artifacts that can be ”redefined away”. They involve rotations in the

space of coupling constants.
Fortin+Grinstein+Stergiou, Luty+Polchinski+Rattazzi, Nakayama

♠ The description of this effect in holography is literally a “gauge artifact”

(because the global symmetry is gauged).

• The folk-theorem between the strong version of the a-theorem and the

appearance of limit cycles has at least one important loop hole:

If the β-functions have branch singularities away from the UV fixed point,

then a limit cycle can be compatible with the strong version of the a/c-

theorem.
Curtright+Zachos

• If it ever happens, this can only happen “beyond perturbation theory”.

Holographic RG flows, Elias Kiritsis

3-



Holography and Quantum RG

• Enter holography as a means of probing strong coupling behavior.

• Holography provides a neat description of RG Flows.

• It also gives a natural a-function and the strong version of the a-theorem

holds.

♠ But...the relevant equations that are converted into RG equations are

second order!

• It is known for some time that the Hamilton-Jacobi formalism in holog-

raphy gives first order RG-equations.
de Boer+Verlinde2, Skenderis+Townsend, Gursoy+Kiritsis+Nitti, Papadimitriou, Kiritsis+Li+Nitti

• This would imply that (conceptually at least) holographic RG flows are

very similar to (perturbative) QFT flows.
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• S. S. Lee has argued that by projecting the RG flow on single trace
couplings (as required in holography) turns the RG equation into a second
order flow equation.

• He called this equation the quantum RG equation.

• In theories with a holographic dual this equation is expected to match
the holographic RG equations.

Holographic RG flows, Elias Kiritsis
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The Goal

• Sporadic investigations of holographic RG flows have indicated that they

have the structure that we see in QFT.

• We would like to do a systematic study of holographic RG flows and see

to what extend and when the second order nature of the bulk equations

matters.

• We would like investigate whether there are holographic RG flows that

do not match the standard QFT intuition.

Holographic RG flows, Elias Kiritsis
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The strategy

• Review of the holographic RG flows.

• Understanding the space of solutions.

• Standard RG flows start a maximum of the bulk potential and end at a
nearby minimum.

• We find exotic holographic RG flows:

♠ “Bouncing flows”: the β-function has branch cuts.

♠ “Skipping flows”: the theory bypasses the next fixed point.

♠ “Irrelevant vev flows”: the theory flows between two minima of the bulk
potential.

• Outlook

Holographic RG flows, Elias Kiritsis
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Holographic RG flows: the setup

• For simplicity and clarity I will consider the bulk theory to contain only

the metric and a single scalar (Einstein-dilaton gravity), dual to the stress

tensor Tµν and a scalar operator O of a dual QFT.

• The two derivative action (after field redefinitions) is

Sbulk = Md−1
∫

dd+1x
√
−g

[
R−

1

2
(∂ϕ)2 − V (ϕ)

]
+ SGH

• We assume V (ϕ) is analytic everywhere except at ϕ = ±∞.

• We will consider the AdS regime: (V < 0 always) and look for solutions

with d-dimensional Poincaré invariance.

ds2 = du2 + e2A(u)dxµdx
µ , ϕ(u)

• The Einstein equations give:

2(d− 1)Ä+ ϕ̇2 = 0 , d(d− 1)Ȧ2 −
1

2
ϕ̇2 + V (ϕ) = 0
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• There are three integration constants in the equations above.

• The Einstein equations can be turned to first order equations using the
“superpotential” (no-supersymmetry here).

Ȧ = −
1

2(d− 1)
W (ϕ) , ϕ̇ = W ′(ϕ) , dot =

d

du

−
d

4(d− 1)
W (ϕ)2 +

1

2
W (ϕ)′2 = V (ϕ) , ′ =

d

dϕ

• This map fails ONLY where ϕ̇ = 0.

• These equations have the same number of integration constants. In
particular there is a continuous one-parameter family of W (ϕ).

• Given a W (ϕ), A(u) and ϕ(u) can be found by integrating the first order
flow equations.

• The two integration constants will be later interpreted as couplings of
the dual QFT.
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• The third integration constant hidden in the superpotential equation

controls the vev of the operator dual to ϕ.

• Therefore:

RG flows are in one-to one correspondence with the solutions of the “su-

perpotential equation”.

−
d

4(d− 1)
W (ϕ)2 +

1

2
W (ϕ)′2 = V (ϕ)

• This is the key equation I will be addressing in the rest of this talk.

Holographic RG flows, Elias Kiritsis
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Regularity

• One key point: out of all solutions W , typically one only gives rise to a

regular bulk solution. (and more generally a discrete number∗).

• All others have bulk singularities and are therefore unacceptable∗ (holo-

graphic) classical solutions.

• This reduces the number of (continuous) integration constants from 3

to 2.

• This has a natural interpretation in the dual QFT: the theory determines

it possible vevs (we exclude flat directions).

• The remaining first order equations are now the first order RG equations

for the coupling and the space-time volume.

• Now we can favorably compare with QFT RG Flows.

Holographic RG flows, Elias Kiritsis
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Holographic RG Flows

• A QFT with a (relevant) scalar operator O(x) that drives a flow, has

two parameters: the scale factor of a flat metric, and the O(x) coupling

constant.

• These two parameters, generically correspond to the two integration

constants of the first order bulk equations.

• Since ϕ is interpreted as a running coupling and A is the log of the RG

energy scale, the holographic β-function is

Ȧ = −
1

2(d− 1)
W (ϕ) , ϕ̇ = W ′(ϕ)

dϕ

dA
= −

1

2(d− 1)

d

dϕ
logW (ϕ) ≡ β(ϕ) ∼

1

C

d

dϕ
C(ϕ)

• C ∼ 1/W d−1 is the (holographic) C-function for the flow.
Girardello+Petrini+Porrati+Zaffaroni, Freedman+Gubser+Pilch+Warner
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• W (ϕ) is the non-derivative part of the Schwinger source functional of the
dual QFT =on-shell bulk action.

de Boer+Verlinde2

Son−shell =
∫

ddx
√
γ W (ϕ) + · · ·

∣∣∣∣
u→uUV

• The renormalized action is given by

Srenorm =
∫

ddx
√
γ (W (ϕ)−Wct(ϕ)) + · · ·

∣∣∣∣
u→uUV

=

= constant
∫

ddx e
dA(u0)− 1

2(d−1)

∫ ϕ0
ϕUV dϕ̃W ′

W + · · ·

• The statement that dSrenorm
du0

= 0 is equivalent to the RG invariance of
the renormalized Schwinger functional.

• It is also equivalent to the RG equation for ϕ.

• We can prove that

Tµ
µ = β(ϕ) ⟨O⟩

• The Legendre transform of Srenorm is the (quantum) effective potential
for the vev of the QFT operator O.

Holographic RG flows, Elias Kiritsis
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Detour: The local RG

• The holographic RG can be generalized straightforwardly to the local RG

ϕ̇ = W ′ − f ′ R+
1

2

(
W

W ′f
′
)′
(∂ϕ)2 +

(
W

W ′f
′
)
�ϕ+ · · ·

γ̇µν = −
W

d− 1
γµν −

1

d− 1

(
f R+

W

2W ′f
′(∂ϕ)2

)
γµν+

+2f Rµν +
(
W

W ′f
′ − 2f ′′

)
∂µϕ∂νϕ− 2f ′∇µ∇νϕ+ · · ·

Kiritsis+Li+Nitti

• f(ϕ), W (ϕ) are solutions of

−
d

4(d− 1)
W2 +

1

2
W ′2 = V , W ′ f ′ −

d− 2

2(d− 1)
W f = 1

• Like in 2d σ-models we may use it to define “geometric” RG flows.

Holographic RG flows, Elias Kiritsis
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General properties of the superpotential

• From the superpotential equation we obtain a bound:

W (ϕ)2 = −
4(d− 1)

d
V (ϕ) +

2(d− 1)

d
W ′2 ≥ −

4(d− 1)

d
V (ϕ) ≡ B2(ϕ) > 0

• Because of the (u,W ) → (−u,−W ) symmetry we can fix the flow (and

sign of W ) so that we flow from u = −∞ (UV) to u = ∞ (IR). This implies

that:

W > 0 always so W ≥ B

• The holographic “a-theorem”:

dW

du
=

dW

dϕ

dϕ

du
= W ′2 ≥ 0

so that the a-function any decreasing function of W always decreases along

the flow, ie. W is positive and increases.
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• The inequality now can be written directly in terms of W :

W (ϕ) ≥ B(ϕ) ≡

√
−
4(d− 1)

d
V (ϕ)

• The maxima of V are minima of B and the minima of V are maxima of
B.

• The bulk potential provides a lower boundary for W and therefore for the
associated flows.

• Regularity of the flow=regularity of the curvature and other invariants of
the bulk theory:

A flow is regular iff W,V remain finite during the flow.

• As V is assumed finite for ϕ finite. The same can be proven for W .

Therefore singular flows end up at ϕ → ±∞

.

Holographic RG flows, Elias Kiritsis

11-



The standard holographic RG flows

• The standard lore says that the maxima of the potential correspond to UV
fixed points, the minima to IR fixed points, and the flow from a maximum
is to the next minimum.

UV UV UVIR IR

+ + +

• The real story is a bit more complicated.

Holographic RG flows, Elias Kiritsis
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More flow rules

• At every point away from the B(ϕ) boundary (W > B) always two solu-

tions pass:

W ′ = ±
√
2V +

d

2(d− 1)
W2 = ±

√
d

2(d− 1)

(
W2 −B2

)

Holographic RG flows, Elias Kiritsis
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The critical points of W

• On the boundary W = B, we obtain W ′ = 0 and only one solution exists.

• The critical (W ′ = 0) points of W come in three kinds:

♠ W = B at non-extremum of the potential (generic).

♠ Maxima of V (minima of B) (non-generic)

♠ Minima of V (maxima of B) (non-generic)

Holographic RG flows, Elias Kiritsis
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The maxima of V

• We will examine solutions for W near a maximum of V .

• We put the maximum at ϕ = 0.

• When V ′(0) = 0, W ′′(0) is finite.

V (ϕ) = −
1

ℓ2

[
d(d− 1)−

m2ℓ2

2
ϕ2 +O(ϕ3)

]

∆± =
d

2
±

√
d2

4
+m2ℓ2 , m2ℓ2 < 0 , ∆+ ≥ ∆− ≥ 0

• We set (locally) ℓ = 1 from now on.

• If W ′(0) ̸= 0 there is one solution (per branch) off the critical curve,

• If W ′(0) = 0 there are two classes of solutions:
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• A continuous family of solutions (the W− family)

W− = 2(d− 1) +
∆−
2

ϕ2 + · · ·+ Cϕ
d

∆− [1 + · · · ] +O(C2)

• The solution for ϕ and A corresponding to this, is the standard UV source

flow:

ϕ(u) = α e∆− u+· · ·+
∆−
d

C e∆+ u+· · · , eA = eu−A0+· · · , u → −∞

• the solution describes the UV region (u → −∞) with a perturbation by

a relevant operator of dimension ∆+ < d.

• The source is α. It is not part of W .

• C determines the vev: ⟨O⟩ ∼ C α

∆+
∆− .

• The near-boundary AdS is an attractor of all these solutions.
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• A single isolated solution W+ also arriving at W (0) = B(0)

W+ = 2(d− 1) +
∆+

2
ϕ2 +O(ϕ3) , ∆+ > ∆−

• Always W ′′
+ > W ′′

−.

• The associated solution for ϕ, A is

ϕ(u) = α e∆+ u + · · · , eA = e−u+A0 + · · ·

• This is a vev flow ie. the source is zero.

⟨O⟩ = (2∆+ − d) α

• The value of the vev is NOT determined by the superpotential equation.

• It can be reached in a appropriately defined limit C → ∞ of the W− family.

• The whole class of solutions exists both from the left of ϕ = 0 and from
the right.
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RETURN1 RETURN2
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The BF bound

• The BF bound can be written as

4(d− 1)

d

V ′′(0)

V (0)
≤ 1

• If a solution for W near ϕ = 0 exists, then the BF bound is automatically

satisfied as it can be written(
4(d− 1)

d

W ′′(0)

W (0)
− 1

)2
≥ 0

• When BF is violated, although there is no (real) W , there exists a UV-

regular solution for the flow: ϕ(u), A(u).

• This solution is unstable against linear perturbations (and corresponds to

a non-unitary CFT).

Holographic RG flows, Elias Kiritsis
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The minima of V

• We expand the potential near the minimum:

V (ϕ) = −
1

ℓ2

[
d(d− 1)−

m2ℓ2

2
ϕ2 +O(ϕ3)

]
, ∆± =

d

2
±

√
d2

4
+m2ℓ2

m2 > 0 , ∆+ > 0 , ∆− < 0

• There are solutions with W ′(0) ̸= 0. These are solutions that do not stop
at the minimum.

• There are two isolated solutions with W ′(0) = 0.

W±(ϕ) =
1

ℓ

[
2(d− 1) +

∆±
2

ϕ2 +O(ϕ3)
]
,

• No continuous parameter here as it generates a singularity.

• Although the solutions look similar, their interpretation is very different.
W+ has a local minimum while W− has a local maximum.
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• The W− solution:

ϕ(u) = α e∆− u + · · · , eA = e−(u−u0) + · · · .

• Since ∆− < 0, small ϕ corresponds to u → +∞ and eA → 0.

• This signal we are in the deep interior (IR) of AdS.

• The driving operator has (IR) dimension ∆+ > d and a zero vev in the

IR.

• Therefore W− generates locally a flow that arrives at an IR fixed point.
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• The W+ solution is:

ϕ(u) = α e∆+ u + · · · , eA = e−(u−u0) + · · · .

• Since ∆+ > 0 small ϕ corresponds to u → −∞ and eA → +∞.

• This solution described the near-boundary (UV) region of a fixed point.

• This solution is driven by the vev of an operator with (UV) dimension

∆+ > d (irrelevant).
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♠ A minimum of the potential can be either an IR fixed point or a UV fixed

point.

Holographic RG flows, Elias Kiritsis
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Bounces

• Generic extrema of W : W ′(ϕB) = 0 but V ′(ϕB) ̸= 0.

• From the superpotential equation it is easy to show that

W ′W ′′ ≃ V ′

and therefore:

W ′(ϕB) = 0 , W ′′(ϕB) = ∞

• The solution is not analytic but

W±(ϕ) = B(ϕB)± (ϕ− ϕB)
3
2 + · · ·

• ± corresponds to the two signs of W ′.

• The two branches can be glued together to make a single solution.

18



18-



• A flow cannot end at ϕB as the resulting geometry is not geodesically

complete.

• To obtain a complete geometry we must glue the two solutions.

• Although W is not analytic at ϕB, the full solution (geometry+ϕ) is

regular at the bounce.

ϕ(u) = ϕB +
V ′2

3
(u− uB)2+ · · · , A(u) = AB −

√
−

V (ϕB)

d(d− 1)
(u− uB)+ · · ·

• W as a function of u is both continuous and regular at the bounce.

• W is increasing although W ′ changes sign!

• The only special thing that happens is that ϕ̇ = 0 at the bounce.

• All bulk curvature invariants are regular at the bounce!

• All fluctuation equations of the bulk fields are regular at the bounce!
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• The holographic β-function behaves as

β = ±

√√√√−2d(d− 1)
V ′(ϕB)

V (ϕB)
(ϕ− ϕB) +O(ϕ− ϕB)

• The β-function is patch-wise defined. It has a branch cut at the position

of the bounce.

• This is non-perturbative behavior.

• Such behavior was conjectured that could lead to limit cycles without

violation of the a-theorem.
Curtright+Zachos

Holographic RG flows, Elias Kiritsis
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Global Regularity

• We have analysed the local behavior of solutions W to the superpotential

equation and all its critical points.

• Flows start and end at the extrema of the potential or at ϕ = ±∞.

• For the analytic potentials we assumed, then all regular flows are all

solutions for W (ϕ), which remain finite along the flow.

• Regular flows can start and end ONLY at critical points of the potential.

• What these flows are, depends on the details of the potential.
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Exotica

• Vev flow between two minima of the potential

ϕ

B(ϕ)

W(ϕ)

V(ϕ)

• Exists only for special potentials
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An example was discussed in a cosmological setting.
Libanov+Rubakov+Sibiryakov

• A potential:

V (ϕ) =
(kv)2

2

[
1−

(
ϕ

v

)2]2
−

d

4(d− 1)

{
kv2

(
ϕ

v

) [
1−

1

3

(
ϕ

v

)2]
+W0

}2

.

with

W (ϕ) = kv2
ϕ

v

[
1−

1

3

ϕ2

v2

]
+W0

ϕ(u) = v tanh(ku)

Holographic RG flows, Elias Kiritsis
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Regular multibounce flows

W

21



21-



u

A(u)
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Curtright, Jin and Zachos gave an example of an RG Flow that is cyclic

but respects the strong C-theorem

βn(ϕ) = (−1)n
√
1− ϕ2 → ϕ(A) = sin(A)

If we define the superpotential branches by βn = −2(d−1)W ′
n/Wn we obtain

logWn =
(2n+1)π +2(−1)n(arcsin(ϕ) + ϕ

√
1− ϕ2)

8(d− 1)

and we can compute the potentials from V = W ′2/2− dW2/4(d− 1) to

obtain Vn(ϕ).

Such piece-wise potentials then satisfy

Vn+2(ϕ) = e
π

2(d−1) Vn(ϕ)

• No such potentials can arise in string theory (I think).

• Holography can provide only “approximate” cycles.

Holographic RG flows, Elias Kiritsis
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Skipping fixed points
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UVIR IRUV

• It is not possible in this example to redefine the topology on the line so

that the flow looks “normal”

• The two flows UV1 → IR1 and UV1 → IR2 correspond to the same source

but different vev’s.

• One can calculate the free-energy difference of these two flows: the one

that arrives at the IR fixed point with lowest a, is the dominant one.

Holographic RG flows, Elias Kiritsis
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Outlook

• Many exotic holographic flows appear for generic potentials

• Do they have fully stable correlators?

• Can they occur in string-derived effective potentials?

• Are they a large-N artifact? Can they occur in strongly-coupled QFTs?

• Can one understand the multiple flows and their dominance from a QFT

point of view?

• Are bouncing flows acceptable holographically? Do they have a con-

sistent finite-T behavior? They seem to be intermediate between regular

monotonic floes and limit cycles.
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• To obtain limit cycles, one needs infinitely multivalued potentials. Do

these exist in string theory? Does this exclude holographic limit cycles?

• In gravity the extrema of the potential determine the flows. This is re-

lated to Morse theory. On the other hand RG flows are related to bifurcation

theory. Does (supergravity) provide a map between the two frameworks?

Is this non-trivial?

• Once we allow V > 0 cosmology comes in the game, and the behavior

of the solutions is richer.

To be continued......

Holographic RG flows, Elias Kiritsis

23-



THANK YOU!
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BF violating flows

• As mentioned there can be flows out of a BF-violating UV fixed point.

• No β-function description of such flows in the UV.

• Such flows have an infinite-cascade of bounces as one goes towards the
UV.
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• Although the flow is regular, it is unstable.
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