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Ntroduction

e [ he Wilsonian RG is controlled by first order flow equations of the form

dg;
d—;=5z‘(9i) , t=/logu

e Despite our knowledge, there are many aspects of QFT RG flows (in
the most symmetric case: unitary relativistic QFTs), that are still not
understood.

& It is not known if the end-points of RG flows in 4d are fixed points or
include other exotic possibilities (limit circles or “chaotic” behavior)

& This is correlated with the potential symmetry of scale invariant theories:
are they always conformally invariant? (CFTs)?

e In 2d, the answer to this question is "yes'’ .



& Although in 4d this has been analyzed also recently, there are still loop-

holes in the argument.
El Showk+Rychkov+Nakayama, Luty+Polchinski+Rattazzi,

Dymarsky+Komargodksi+Schwimmer+ T heisen+Farnsworth-+Luty-+Prilepina

& In 2d it is a folk-theorem that the strong version of the c-theorem is
expected to exclude limit cycles and other exotic behavior in Unitary Rela-
tivistic QFTs.

Zamolodchikov

& In 4d, we have the weak form of the a-theorem, proved recently.
Komargodski+Schwimmer

& We also have a perturbative proof of the strong version, but with impor-

tant subtleties.
Osborn, Jack-+QOsborn

& The relation between flows of couplings (B-functions) and the trace of

the stress tensor is subtle.
Osborn, Fortin+Grinstein+Stergiou
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& T he subtleties include the possibility that limit cycles appear, but they
are artifacts that can be "redefined away”. They involve rotations in the

space of coupling constants.
Fortin+ Grinstein+Stergiou, Luty-+Polchinski+Rattazzi, Nakayama

& T he description of this effect in holography is literally a “gauge artifact”
(because the global symmetry is gauged).

e [ he folk-theorem between the strong version of the a-theorem and the
appearance of limit cycles has at least one important loop hole:

If the p-functions have branch singularities away from the UV fixed point,
then a limit cycle can be compatible with the strong version of the a/c-

theorem.
Curtright+Zachos

e If it ever happens, this can only happen “beyond perturbation theory".
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Holography and (Quantum RGI

e Enter holography as a means of probing strong coupling behavior.
e Holography provides a neat description of RG Flows.

e It also gives a natural a-function and the strong version of the a-theorem
holds.

& But...the relevant equations that are converted into RG equations are
second order!

e It is known for some time that the Hamilton-Jacobi formalism in holog-

raphy gives first order RG-equations.
de Boer+\Verlinde?, Skenderis4 Townsend, Gursoy+Kiritsis4+Nitti, Papadimitriou, Kiritsis4Li+Nitti

e This would imply that (conceptually at least) holographic RG flows are
very similar to (perturbative) QFT flows.



e S. S. Lee has argued that by projecting the RG flow on single trace
couplings (as required in holography) turns the RG equation into a second

order flow equation.

e He called this equation the quantum RG equation.

multi—trace ,
operators

" fixed point

N

\\N\J/// >

projected single—trace
fixed point operators

e In theories with a holographic dual this equation is expected to match

the holographic RG equations.
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eGoal

e Sporadic investigations of holographic RG flows have indicated that they
have the structure that we see in QFT.

e We would like to do a systematic study of holographic RG flows and see
to what extend and when the second order nature of the bulk equations
matters.

e We would like investigate whether there are holographic RG flows that
do not match the standard QFT intuition.
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| he strateqy'

e Review of the holographic RG flows.

e Understanding the space of solutions.

e Standard RG flows start a maximum of the bulk potential and end at a
nearby minimum.

e We find exotic holographic RG flows:
& 'Bouncing flows”: the g-function has branch cuts.
& ''Skipping flows”: the theory bypasses the next fixed point.

& ‘Irrelevant vev flows” : the theory flows between two minima of the bulk
potential.

e Outlook

Holographic RG flows, Elias Kiritsis
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Holographic RG TIows: the Setup||

e For simplicity and clarity I will consider the bulk theory to contain only
the metric and a single scalar (Einstein-dilaton gravity), dual to the stress
tensor 7}, and a scalar operator O of a dual QFT.

e The two derivative action (after field redefinitions) is

1
Spute = M1 /dde V=g [R — 5((%)2 — V()| + SgH

e We assume V(o) is analytic everywhere except at ¢ = 0.
e We will consider the AdS regime: (V < 0 always) and look for solutions
with d-dimensional Poincaré invariance.

ds® = du® + €2A(u)d$'udib'u , o(u)

e [ he Einstein equations give:

2d-DA+FE =0, dd-1)A% - 2P +V($) =0



e [ here are three integration constants in the equations above.

e [ he Einstein equations can be turned to first order equations using the
“superpotential” (no-supersymmetry here).

. 1 . , _d

2 1 12 __ /I __ d
W@+ W2 =V . =

d
4(d—1)

e This map fails ONLY where ¢ = 0.

e [ hese equations have the same number of integration constants. In
particular there is a continuous one-parameter family of W (¢).

e Given a W(¢), A(u) and ¢(u) can be found by integrating the first order
flow equations.

e [ he two integration constants will be later interpreted as couplings of
the dual QFT.



e [ he third integration constant hidden in the superpotential equation
controls the vev of the operator dual to .

e [ herefore:

RG flows are in one-to one correspondence with the solutions of the ‘su-
perpotential equation’ .

d
4(d—1)

W ($)2 + %W@b)’? = V($)

e [ his is the key equation I will be addressing in the rest of this talk.
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Reqgularity |

e One key point: out of all solutions W, typically one only gives rise to a
regular bulk solution. (and more generally a discrete number®*).

e All others have bulk singularities and are therefore unacceptable* (holo-
graphic) classical solutions.

e This reduces the number of (continuous) integration constants from 3
to 2.

e [ his has a natural interpretation in the dual QFT: the theory determines
it possible vevs (we exclude flat directions).

e T he remaining first order equations are now the first order RG equations
for the coupling and the space-time volume.

e Now we can favorably compare with QFT RG Flows.

Holographic RG flows, Elias Kiritsis
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HolographiC R I—Iovvs'

e A QFT with a (relevant) scalar operator O(xz) that drives a flow, has
two parameters: the scale factor of a flat metric, and the O(xz) coupling
constant.

e [ hese two parameters, generically correspond to the two integration
constants of the first order bulk equations.

e Since ¢ is interpreted as a running coupling and A is the log of the RG
energy scale, the holographic g-function is

. 1 - /
A:_Q(d_l)W(cb) , ¢=WY(¢)
= _Q(d D) 4 logW(¢) = pB(o) ~ E@C(Qb)

e C' ~ 1/W91is the (holographic) C-function for the flow.
Girardello+Petrini+Porrati+Zaffaroni, Freedman-+ Gubser—+Pilch+Warner
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e W (@) is the non-derivative part of the Schwinger source functional of the

dual QFT =on-shell bulk action. de Boer4Verlinde?

Son—shell — /ddxﬁ W(Qb) + -

e [ he renormalized action is given by

Srenorm = [ d%e\/7 (W(6) = Wer($)) + -

u—rugy

U—>Uurry,

dA(ug)— st [P0 agW!
— constant/ddaf; e (u0) 2(d—1) f¢UV i 4+ ...

e The statement that ¢“renorm — s equivalent to the RG invariance of
the renormalized Schwinger ?unctional.

e It is also equivalent to the RG equation for .

e \We can prove that

T" = B(¢) (O)

e The Legendre transform of Srenorm is the (quantum) effective potential
for the vev of the QFT operator O.

Holographic RG flows, Elias Kiritsis
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etour: ne 10Cca €

e T he holographic RG can be generalized straightforwardly to the local RG

%4

b= W i Rt L (W) @67+ (1 o+

W 1 >
q_ 1’)’,uu — d— (f + QW’ (8¢) ) 'Y,ul/‘l'

Vv =

W
12f Ry + (Wf’ _ 2f”) Ouddud — 21V V& - -
Kiritsis+Li+Nitti

e [(¢), W(¢) are solutions of

d
4(d—1)

1 d— 2
W24+ -w2=v . W #— W f=1
Jr2 / 2(d — 1) /

o Like in 2d o-models we may use it to define “‘geometric” RG flows.
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General properties orf the superpotential I

e From the superpotential equation we obtain a bound:

4(d-1) 2(d — 1) 4(d — 1)

- V(¢) = B(¢) >0

W ($)? = V(g) + W2 > —

e Because of the (u,W) — (—u,—W) symmetry we can fix the flow (and
sign of W) so that we flow from u = —oo (UV) to u = oo (IR). This implies
that:

W >0 always so W > B

e [ he holographic “a-theorem™:

dW:dW d¢=W’2>O
du do du -
so that the a-function any decreasing function of W always decreases along

the flow, ie. W is positive and increases.
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e [ he inequality now can be written directly in terms of W:

RIS

W(e) > B(9)

e [ he maxima of V are minima of B and the minima of V are maxima of
B.

e [ he bulk potential provides a lower boundary for W and therefore for the
associated flows.

e Regularity of the flow=regularity of the curvature and other invariants of

the bulk theory:
A flow is regular iff W,V remain finite during the flow.

e As V is assumed finite for ¢ finite. The same can be proven for W.

T herefore singular flows end up at ¢ — oo

Holographic RG flows, Elias Kiritsis
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| he standard holographiCc R TIows'

e [ he standard lore says that the maxima of the potential correspond to UV
fixed points, the minima to IR fixed points, and the flow from a maximum
IS to the next minimum.

— Bl(9)
=i Wst1(¢)
B st 2(¢')

e [ he real story is a bit more complicated.

Holographic RG flows, Elias Kiritsis
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More flow rules

e At every point away from the B(¢) boundary (W > B) always two solu-
tions pass:

) d > d 2 2
W _i\/2v+2(d_l)w —i\/Q(d_l) (W —B)

W)

R_ LN |
N / A

Holographic RG flows, Elias Kiritsis
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[ he critical points of VV||

e On the boundary W = B, we obtain W/ = 0 and only one solution exists.

e The critical (W' = 0) points of W come in three kinds:

& W = B at non-extremum of the potential (generic).

& Maxima of V (minima of B) (non-generic)

& Minima of V (maxima of B) (non-generic)

Holographic RG flows,
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Ne maxima of \/II

e \We will examine solutions for W near a maximum of V.
e We put the maximum at ¢ = 0.

e When V/(0) =0, W"(0) is finite.

m202

1
V(e) =~ [d(d—l)— $2 4+ 0(¢3)
d d? 2,2 22

e We set (locally) £ =1 from now on.

e If W/(0) £ O there is one solufion (per branch) off the critical curve,

o If W/(0) = O there are two classes of solutions:

15



e A continuous family of solutions (the W_ family)

d
W_=2<d—1)+%¢2+---+c& 1414 0(C2)

e T he solution for ¢ and A corresponding to this, is the standard UV source
flow:

JANE
gb(u)zaeA_ u+""|‘TC€A+ b R €A=€u_AO—|-“° , U — —O0

e the solution describes the UV region (u — —oo) with a perturbation by
a relevant operator of dimension Ay <d.

e [ he source is «. It is not part of W.

A
i~
e C determines the vev: (O) ~ C a®-.

e [ he hear-boundary AdYS is an attractor of all these solutions.




e A single isolated solution W, also arriving at W(0) = B(0)

A
Wi =20d-1)+—*+ 0% . Ap>Al

e Always W' > w".

e T he associated solution for ¢, A is

p(u) =a eP+l4... | A= utdo ...

e | his is a vev flow ie. the source is zero.

0y = (A4 —d) «a

e [ he value of the vev is NOT determined by the superpotential equation.
e It can be reached in a appropriately defined Ilimit C — oo of the W_ family.

e T he whole class of solutions exists both from the left of ¢ = 0 and from
the right.



V()

RE T URNIT] RETURN?

Holographic RG flows, Elias Kiritsis

15-



ne — DOUNCA

e [ he BF bound can be written as
4(d—1) V"(0) -
d V(0) —

e If a solution for W near ¢ = 0 exists, then the BF bound is automatically
satisfied as it can be written

<4(d— 1)W"(0) 1>2 6
d  W(0) =

e When BF is violated, although there is no (real) W, there exists a UV-
regular solution for the flow: ¢(u), A(u).

e This solution is unstable against linear perturbations (and corresponds to
a non-unitary CFT).

Holographic RG flows, Elias Kiritsis
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e minima o Vq

e \We expand the potential near the minimum:

d d?

202
mt ¢2+0<¢3)] . AL =—+

-+ m202

1
V(p) = 2 [d(d —1) — 5 o

m®>0 , AL>0 , A_<O

e There are solutions with W/(0) # 0. These are solutions that do not stop
at the minimum.

e There are two isolated solutions with W/(0) = 0.

1 JAN
Wi(g) = 2(d—1)+§¢2+0(¢3> ,

e NO continuous parameter here as it generates a singularity.

e Although the solutions look similar, their interpretation is very different.
W4 has a local minimum while W_ has a local maximum.

17



e [ he W_ solution:

gb(u):aeA_U+... : GAZG_(u_uO)—I—....

e Since A_ < 0, small ¢ corresponds to u — 400 and e? — 0.
e This signal we are in the deep interior (IR) of AdS.

e The driving operator has (IR) dimension A4 > d and a zero vev in the
IR.

e [ herefore W_ generates locally a flow that arrives at an IR fixed point.






e [ he W+ solution is:

¢(’u,):a€A—|—U_|_... : GAZG_(U_UO)—I—--._

e Since A > 0 small ¢ corresponds to u — —co and e/ — +oo.
e This solution described the near-boundary (UV) region of a fixed point.

e This solution is driven by the vev of an operator with (UV) dimension
Ay > d (irrelevant).



>

» O

— B(¢)
W_(9)
W _(¢)

& A minimum of the potential can be either an IR fixed point or a UV fixed

point.

Holographic RG flows,
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ounces !

e Generic extrema of W : W/(¢p) = 0 but V/(¢5) # 0.

e From the superpotential equation it is easy to show that
w'w!" ~ v/
and therefore:

W' (¢g) =0 , W'(¢p) =cc

e [ he solution is not analytic but

Wi(6) = B(dp) £ (¢ — ¢p)3 + -

e + corresponds to the two signs of W’.

e [ he two branches can be glued together to make a single solution.

18
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e A flow cannot end at ¢p as the resulting geometry is not geodesically
complete.

e [O obtain a complete geometry we must glue the two solutions.

e Although W is not analytic at ¢p, the full solution (geometry—+¢) is
regular at the bounce.

12
¢(U)Z¢B+V?(u—u3)2_|_... 7 A(U)ZAB—\/ V(¢oB)

_d(d—l)(u_uB)_l_m

e W as a function of u is both continuous and regular at the bounce.
e W is increasing although W’ changes sign!

e [ he only special thing that happens is that q'b — O at the bounce.

e All bulk curvature invariants are regular at the bounce!

e All fluctuation equations of the bulk fields are regular at the bounce!
18-



e [ he holographic g-function behaves as

V'(op)

Vidn) (¢ —odB) + O(¢ — ¢B)

B = iJ —2d(d — 1)

e [ he p-function is patch-wise defined. It has a branch cut at the position
of the bounce.

e [ his is non-perturbative behavior.

e Such behavior was conjectured that could lead to limit cycles without

violation of the a-theorem.
Curtright+Zachos

Holographic RG flows, Elias Kiritsis
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Global Reqularity'

e \WWe have analysed the local behavior of solutions W to the superpotential
equation and all its critical points.

e Flows start and end at the extrema of the potential or at ¢ = +oc.

e For the analytic potentials we assumed, then all regular flows are all
solutions for W(¢), which remain finite along the flow.

e Regular flows can start and end ONLY at critical points of the potential.

e \What these flows are, depends on the details of the potential.
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e Vev flow between two minima of the potential

e EXists only for special potentials

— B(9)
W(o)
— V(9)
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An example was discussed in a cosmological setting.
Libanov+Rubakov-+Sibiryakov

e A potential:
o= [ () st (O -3 )]+

with

2
W(¢p) = ka% [1 — %¢—2] —+ Wo

v

o(u) = v tanh(ku)

Holographic RG flows, Elias Kiritsis
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Regular multibounce Tlovvsl
A

— B(¢)
— W()
— W()
— W()
— W()







A(u)

Q'R
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Curtright, Jin and Zachos gave an example of an RG Flow that is cyclic
but respects the strong C-theorem

Bn(9) = (—1)"J1—9¢° —  ¢(A) = sin(A)
If we define the superpotential branches by 8, = —2(d—1)W/ /W, we obtain

(2n 4+ 1)7 + 2(—1)"(arcsin(¢) + ¢/ 1 — ¢2)
8(d—1)

and we can compute the potentials from V = W'?2/2 —dW?2/4(d — 1) to
obtain Vi, (¢).

log W,, =

Such piece-wise potentials then satisfy

Vira(8) = €201 V(o)

e No such potentials can arise in string theory (I think).

e Holography can provide only “approximate” cycles.

Holographic RG flows, Elias Kiritsis
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SKIppIng Tixed points!

uv

9,0,

B(9)
W io(9)

Wst 1(('))
Wst Z(q))
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UV IR UV IR

B UGS

P—

e It is not possible in this example to redefine the topology on the line so
that the flow looks “normal”

e [he two flows UV; — IRy and UV; — IR, correspond to the same source
but different vev's.

e One can calculate the free-energy difference of these two flows: the one
that arrives at the IR fixed point with lowest a, is the dominant one.

Holographic RG flows, Elias Kiritsis
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e Many exotic holographic flows appear for generic potentials

e Do they have fully stable correlators?

e Can they occur in string-derived effective potentials?

e Are they a large-N artifact? Can they occur in strongly-coupled QFTs?

e Can one understand the multiple flows and their dominance from a QFT
point of view?

e Are bouncing flows acceptable holographically? Do they have a con-
sistent finite-T behavior? They seem to be intermediate between regular
monotonic floes and limit cycles.
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e [0 obtain limit cycles, one needs infinitely multivalued potentials. Do
these exist in string theory? Does this exclude holographic limit cycles?

e In gravity the extrema of the potential determine the flows. This is re-
lated to Morse theory. On the other hand RG flows are related to bifurcation
theory. Does (supergravity) provide a map between the two frameworks?
Is this non-trivial?

e Once we allow V > 0 cosmology comes in the game, and the behavior
of the solutions is richer.

To be continued......

Holographic RG flows, Elias Kiritsis
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THANK YOU!
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BF violating TIOWS'

e As mentioned there can be flows out of a BF-violating UV fixed point.

e No B-function description of such flows in the UV.

e Such flows have an infinite-cascade of bounces as one goes towards the
UV.

"\
A
/_——_|.R7

> O
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e Although the flow is regular, it is unstable.
Holographic RG flows, Elias Kiritsis
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Detailed plan of the presentation I

[Title pagd O minutes

Bibliographyl 1 minutes

Infroduction 4 minutes

Holography and the Quantum R 6 minutes

[The strategyl 7 minutes

Holographic RG: the setup 11 minutes

Reqgularity] 12 minutes

Holographic RG FIlows 16 minutes

Detour: _the local Rd 18 minutes

[General Properties of the superpotential 21 minutes

[The standard holographic RG Flows 23 minutes

Moaore flow ruled 24 minutes

26



[The critical points of VW 26 minutes

MThe maxima of M 34 minutes

MThe BF bound 35 minutes
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e BF-violating fTowg 60 minutes
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