

ARIES Network ADA on Beam Diagnostics

WP8: Advanced Diagnostics at Accelerators

Kick-off Meeting CERN, May 4th, 2017

Work-package leader: Peter Forck GSI

Task 2: Beam Diagnostics at hadron LINACs → Peter Forck GSI

Task 3: BD at hadron synchrotrons → Rhodri Jones CERN

Task 4: BD at 3rd gen. light sources → Fancis Perez ALBA-CELLS

Task 5: BD at 4th gen. light sources → Kay Wittenburg DESY

Network Activity concerning Beam Diagnostics

Requirements for beam diagnostics at novel accelerators:

- > Commissioning & enhanced operation of adequate diagnostics is required
 - → novel technologies must be used for high resolution, dynamic range, data rate ...
 - → intensive interaction to experts in beam dynamics, operation, control system ...
- > Instruments are based on quite different physical principles and techniques
 - → experts for various technologies at accelerator labs, universities and industry
 - → not each accelerator lab recruited the 'right' expert for the required technology
- > Design of diagnostics for novel accelerators
 - → novel ideas or adaption of instruments for new demands

Goal → Focusing of activities at different labs:

- Discussion of urgent requirements and novel methods
- Roadmap for realization
- Recommendations for proper instrument layout and analysis methods

Method → **Organization of topical workshops and exchange of personnel**:

- Meeting of physicists, engineers, technicians from acc. labs, universities & industry engineers are a major part of a successful technical development
- Education: Meeting of experts and newcomers like PhD students
- Exchange of personnel for common device development & acc. commissioning

Goal concerning Beam Diagnostics

Workshop on actual topics → About four workshops foreseen for each tasks:

Documentation as a very useful documentation concerning state-of-the-art knowledge

Open for everybody → published on ARIES web-site and by personalized announcement

Connections to beam dynamics, operation & industry for hardware and software

Exchange of personnel or invitation of expert typically for 2 to 4 weeks:

Support for design and realization of instruments and methods

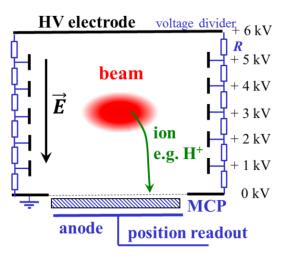
Reason for topical workshops:

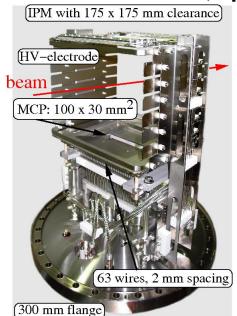
Beam diagnostics community is very active e.g. conference with 300 participants

Workshops: special topics can't be discussed in detail at conferences

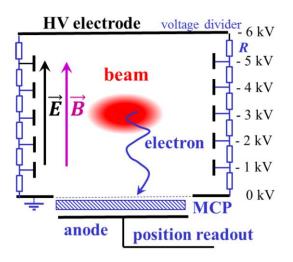
Workshops: one subject can be discussed in detail in connection with other communities

Very good experiences with previous funding programs




First event for ARIES ADA: Workshop on Ionization Profile Monitor

Ionization Profile Monitor installed in most hadron synchrotrons & LINACs


Topic of consideration: Detail on various hardware, space charge simulation

Ion detection mode:

Electron detection mode:

Workshop on 22nd to 24th of May at GSI Darmstadt

- 25 participants
- General compilation on IPM realization
- Exchange of novel ideas
- Common code development

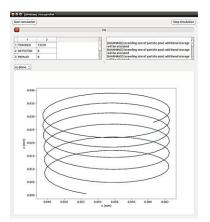
CERN, May 4th, 2017, P. Forck: ARIES-ADA

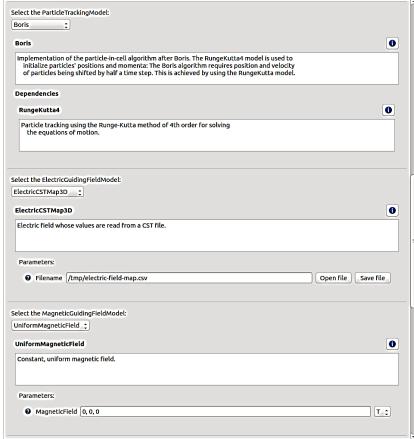
First event for ARIES ADA: Workshop on Ionization Profile Monitor

Code for space charge broadening by beam's space charge

Status March'16: Each laboratory has its own code with special application & restriction Exchange concerning underlying physics and software realization

Initialization of common code development on initiative of M. Sapinski GSI


- Relevant physics included
- Open code with extension possibilities
- Appropriate GUI for input & output
- Web-site for discussion: twiki.cern.ch/twiki/bin/view/IPMSim/


Present participants for code development:

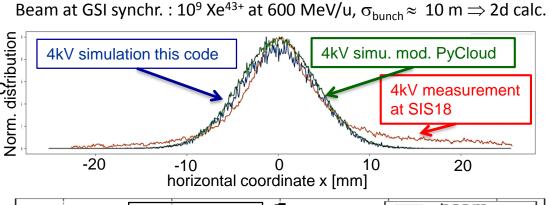
CEA/Saclay, CERN, ESS, FNAL, GSI, J-PARC, RAL

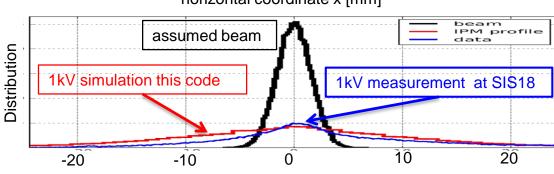
Further interest by:

BINP, BNL, CAS (China), Cockcroft, FZ-Jülich, SNS

First event for ARIES ADA: Workshop on Ionization Profile Monitor

Common, generic code for space charge broadening by beam's space charge


Results: Code benchmark & comparison to measurements


Code includes:

- Application for LINACs i.e. short bunches, non-relativistic
- > Application for **synchrotrons** i.e. long bunches, rel. ⇒ 2d calc. 5
- Various bunch shapes
- Homogeneous \vec{E} & \vec{B} fields or input from CST etc. maps
- Realistic e generation: -
- Different methods for tracking
- Meaningful GUI

Workshop 22nd to 24th of May:

- Presentation to larger audience, 25 participants
- Compilation of worldwide realization and usage of IPMs
- Motivation for benchmarking of code and common usage
- Discussion on possible extension of code and new ideas
- ⇒ Accelerator Research and Innovation for European & Worldwide Science: ARIEWS

Task 2: Advanced Instrumentation for hadron LINACs

Hadron LINACs uses high gradient acc. and based on complex beam dynamics Goal: Emittance conservation, low losses but critical matching requirements

Task leader: GSI

- ➤ Implementation of high precision position, profile and phase measurements BPMs: Precise position and phase measurement, design of electronics & signal processing, In collaboration with electron accelerators as of Task 4 and 5
 - → workshop 'Next generation BPM systems' with Task 3 at CERN
- Non-invasive longitudinal and transverse profile and halo measurements
 Methods of non-invasive profile measurement, partly common subject with Task 3
 → workshop 'Experiences and Simulation for IPMs' with Task 3, May 2017 at GSI
 Extension for halo determination and matching conditions
 Methods of reliable emittance determination
 - → workshop 'Transverse & longitudinal emittance measurement' May 2019 at GSI
 - → workshop 'Scint. screen, OTR screen and rad-hard cameras' with Task 2 at CERN
- Automated methods for beam matching between cavities Methods of transmission control Design of feedback or feed-forward loops using non-invasive measurement results Design of optimized algorithms

Task 3: Advanced Instrumentation for Hadron Synchrotrons

The intensity limit should be reached for regular operation Goal: Prevention of instabilities, emittance con., low losses, precise beam control **Task leader: CERN**

- ➤ Design of next generation, high performance BPM systems

 High precession and accuracy, large data handling and analysis, common subject to Task 4
 - Determination of lattice functions
 - Feedback systems for position on large time scale, tune, chromaticity
 - → workshop 'Extracting information from ele-mag. monitors' at CERN
 - → workshop 'Next generation BPM systems' at CERN
- Non-invasive transverse profile and halo measurements
 Comparison of technologies for various gas based monitors, common subject to Task 2
 Design of electro-optical methods and synchrotron light monitors
 - → workshop Experiences and Simulation for IPMs' with Task 2, May 2017 at GSI
 - → workshop 'Scint. screen, OTR screen and rad-hard cameras' with Task 2 at CERN
- ➤ Monitors for improvement and control concerning beam instabilities

 Correct monitoring, interpretation and control of possible instabilities

 Damping of coupled- or intra bunch instabilities with appropriate feedback

 Close collaboration with beam dynamics experts, common subject to Task 4

 → workshop 'Extracting information from ele-mag. monitors' at CERN

Task 4: Advanced Instrumentation for 3rd Generation Light Sources

3rd generation synchrotrons aim for significant emittance reduction, higher stability Goal: Prevention of instabilities, achievement of stability requirements and resolution **Task leader: ALBA**

➤ Implementation of precision orbit determination & closed orbit feedback Requirements for high stability down to 1 % of beam size

Closed orbit feedback with 100 nm accuracy and 1 kHz bandwidth, common subject to Task 3 Inclusion of xBPM at beam lines into feedback system

Design of feedback loops, common subject to Task 3 & 5

- → workshop 'Instabilities and Feedback Systems ' June '18 at ALBA, with task 3
- → workshop 'Beam Dynamics Requirements for BPMs ' June '19 at ALBA, with task 3&5
- ➤ Improvement of methods for transverse & longitudinal profile
 Implementation of optical interference & x-ray technologies, connection to industrial partners
 Fast observation of longitudinal profiles matching and possible instabilities control
 - → workshop 'Ultra Low Emittance Measurements ' in autumn '17 at ALBA
 - → workshop 'Beam Loss Monitor System' June '20 at ALBA
- Methods of impedance determination to prevent for beam instabilities
 Monitoring, interpretation and control of possible instabilities with appropriate feedback
 - → workshop 'Instabilities and Feedback Systems ' June '18 at ALBA, with task 3
- → co-funding of workshop for Diagnostics Expert of European Light Sources DEELS '20

Task 5: Advanced Instrumentation for FELs

For FELs have extreme beam parameters & novel diagnostics must be used Goal: Precise measurement of beam parameters, alignment issues, reproducibility **Task leader: DESY**

- Design of high precision position monitoring and feedback system Demands for high precession position measurements with short pulses Position feedback down to bunch-by-bunch basis
 - → workshop 'Bunch-by-bunch beam stabilization in FELs' in Dec. '19 at PSI
 - → workshop 'Beam emittance preservation' in Dec. '20 at DESY together with Task 4
- ➤ Short bunch length measurement and synchronization
 Improvement of electro-optical monitors fs time resolution, synchronization for acc.& users
 Experiences related operation (even by non-experts) of complex instrumentation
 - → workshop 'Synchronization with femtosecond accuracy ' in Dec. '17 at DESY
 - → workshop 'Bunch length measurement' in Dec. '18 at DESY
- Reliability monitoring and interlock generation
 Monitors for pulse-by-pulse evaluation of beam parameters for reproducibility statements
 Design and operation of automated beam parameter control and interlock generation

Summary: Advanced Diagnostics at Accelerators

Workshop on <u>actual</u> topics→ About four workshops foreseen for each tasks:

Typical number of attendance: 20 to 35 worldwide experts

Documentation as a very useful documentation concerning state-of-the-art knowledge

Open for everybody → published on ARIES web-site and by personalized announcement

Connections to beam dynamics, operation & industry for hardware and software

Exchange of personnel or invitation of expert typically for 2 to 4 weeks:

Support for design and realization of instruments and methods

Everybody is welcome to propose an actual topic and contribute to the efforts and the success of common research. Please contact us!

Thank you for your attention!

