

New Technologies: New Materials for Extreme Thermal Management – PowerMat (WP17) ARIES Kick-off Meeting, CERN Geneva 04.05.2017

Alessandro Bertarelli (CERN), Marilena Tomut (GSI)

What is Extreme Thermal Management?

Applications dealing with very high temperatures, pressures, strain rates, particle irradiation, in harsh environments ...

Fusion Engineering

A. Bert

deda

Particle Accelerators (Beam Intercepting Devices)

High temperature Aerospace Applications

Groove heid

Test 3 ~ 0.67 MJ

~ 0.25 MJ

Test 2 ~ 0.075 MJ

PowerMat in a Nutshell

- Push forward R&D of novel Ceramic Matrix and Metal Matrix Composites based on graphite and diamond reinforcements with various dopants
- Simulate and test materials under extreme thermal shocks (particle- or laser-beam induced) and particle irradiation
- Investigate radiation damage from theoretical, numerical and experimental standpoint
- Identify materials for a broad range of accelerator applications (high power collimators, beam targets, beam windows and luminescence screens ...)
- Explore societal applications in advanced engineering, medical imaging, quantum computing, energy efficiency, aerospace ...

PowerMat Partners

- Strong interaction with WP14 (Promoting Innovation) Task 14.4
- WP17: 6 main beneficiaries, 1 associate (NIMP)
- WP14: 1 beneficiary industry (RHP-Technology), 1 associate industry (Brevetti Bizz) in Task 14.4

A. Bertarelli – Collimation Material and Design Readiness for LS2 – 2 May 2017

PowerMat Partners

Work Package Organization

- **PowerMat JRA** is organized in 5 Tasks:
 - 17.1: Communication & Coordination
 A. Bertarelli, CERN; M. Tomut, GSI
 - 17.2: Materials development and characterization
 A. Bertarelli, CERN
 - 17.3: Dynamic testing and online monitoring
 L. Peroni, POLITO
 - 17.4: Simulation of irradiation effects and mitigation methods
 A. Lechner, CERN
 - 17.5: Broader accelerator and societal applications
 M. Tomut, GSI
- Within **WP14** (**Promoting Innovation**):
 - 14.4: Industrial production of materials for extreme thermal management
 - F. Carra, CERN

Coordinator: A. Bertarelli, CERN

Participants: CERN, GSI, NIMP, POLIMI, POLITO, UM (plus Brevetti Bizz, RHP-Technology through WP14)

- Research, investigation, development and characterization of novel CMC and MMC based on graphitic, carbide or diamond reinforcements and dopants (in collaboration with Task 14.4).
- Study and development of electrically conductive coatings, resisting the impact of high intensity particle beams.
- Characterization of thermophysical and outgassing properties, microstructural analyses, study of phases and of their change under various environments ...

Example of Ceramic Matrix Composite: Molybdenum Carbide – Graphite (MoGr)

- Co-developed by CERN and Brevetti Bizz
- Produced by Pressure-assisted Electric Current Sintering attaining liquid phase of carbides (T ≅ 2600°C)
- Excellent crystalline structure of carbonaceous phase with highlyoriented Graphene planes. Graphitization favored by the catalyzing effect of molten carbides!
- Excellent thermal properties (up to 4 times Cu diffusivity)!
- Electrical conductivity: factor of 10 higher than isotropic graphite!
- Can be produced in large components (150 x 100 x 25 mm³) and easily machined
- **Can be coated** with metals (e.g. Mo) and ceramics (e.g. TiN)

. Bertarelli – Collimation Material and Design Readiness for LS2 – 2 May 2017

Example of Metal Matrix Composite: Copper – Diamond (CuCD)

- Developed by RHP-Technology
- Produced by Rapid Hot Pressing (T ≅ 1000°C)
- Excellent electrical conductivity, very good thermal conductivity
- Shock and Radiation resistant
- Can be cladded with pure copper

Pulse duration:	0.7-20 ns
energy:	0.3-1 kJ
Max. Intensity:	10 ¹⁶ W/cm ²

Readiness for L

10

Task 17.3: Dynamic testing and online monitoring

Coordinator: L. Peroni, POLITO

Participants: CERN, ELI-NP, GSI, POLIMI, POLITO

Testing of material samples in a broad range of environments:

- Mechanical testing in quasi-static and dynamic conditions, at various temperatures
- Tests under very high power laser beams
- Irradiation tests with online monitoring of properties evolution
- Hydrodynamic simulations of experiments Equations of State, Spall Strengths for new materials

Task 17.3: Dynamic testing and online monitoring

Applications of materials studied in this WP require high resistance to high energy, high energy density impacts, as well as radiation.

Task 17.3: Dynamic testing and online monitoring

Mechanical testing in quasi-static and dynamic conditions, at various temperatures

Task 17.3: Dynamic testing and online monitoring

Tests under very high power p⁺ and laser beams (GSI, ELI-NP)

p+ from HiRadMat, CERN and ELI-NP

Explore VH intensity (Phelix, GSI), multi PW laser facility (ELI-NP)

Task 17.4: Simulation of irradiation effects and mitigation methods

Coordinator: A. Lechner, CERN

Participants: CERN, GSI, POLIMI

- Investigation and simulations of material damage induced by irradiation with protons and ions at various energies and doses
- Quantify Displacement per atom (DPA), gas production, nuclear transmutations for equipment in complex accelerator environments and provide a relationship with radiation experiments at lower energies and/or different particle species
- Ideally, relate radiation damage quantities (e.g. DPA) with change of relevant macroscopic material properties
- Open to co-operation with other international collaborations such as RaDIATE – (Radiation Damage In Accelerator Target Environment)

Task 17.5: Broader accelerator and societal applications

Coordinator: M. Tomut, GSI

Participants: CERN, GSI, NIMP, (plus Brevetti Bizz, RHP-Technology through WP14)

R&D towards broader applications of new materials for highpower accelerators, space, society (energy, medicine, computing)

- Exploit irradiation-induced defect centres in diamond for luminescent screens, medical imaging and quantum computing
- Optimize materials compositions for high power targets, beam catchers, beam windows.
- Explore use of intense ion pulses for materials processing
- Explore synergies and applications for energy, medicine, biotechnology, aerospace and advanced technologies

Task 17.5: Broader accelerator and societal applications

Evolution of ion induced luminescence in Cu-CD composites with dose

Beam-induced luminescence in CuCD: withstands beam intensities 3 orders of magnitude higher than traditional Chromox

Task 17.5: Broader accelerator and societal applications

Nitrogen-Vacancy formation by electronic excitation from passage of ions through diamond?

- Swift heavy ions, 5 MeV/u Uranium-ions, 5x10¹¹ cm⁻²
- Electronic stopping power: ~50 keV/nm (Bragg peak)
- delta-electrons up to ~10 keV
- J. Schwartz, et al., J. Appl. Phys., 2014

A. Bertarelli – Collimation Material and Design Readin

	Nitrogen implant	heavy ions	e⁻ beam	See NVs ?
1	No	No	No	No
2	No	Yes	No	No
3	Yes	Yes	No	Yes!
4	Yes	No	Yes	Yes
5	Yes	Yes	Yes	Yes
6	Yes	No	No	No

Task 17.5: Broader accelerator and societal applications

In situ analysis of radiation damage effects

in collaboration with University of Stuttgart

1x1013 i/cm2 20 µm ISSEG

HR-SEM

in collaboration with University of Heidelberg

Raman spectroscopy

In Readiness for Loz - 2 May 24

PowerMat WP Summary and Outlook

- PowerMat is an integrated and comprehensive research activity with challenging and innovative objectives:
 - R&D and optimization of advanced materials for a broad range of application in HEP and advanced engineering ...
 - Innovative numerical and experimental methods to test materials at extreme energy density conditions (beyond HL-LHC) in more accessible experimental facilities and producing less activation.
 - Assessment of radiation damage in materials and results scalability between different irradiation conditions (short, low energy tests vs. long-term, high energy in real accelerators)
 - Control and exploitation of irradiation-induced effects in novel materials (e.g. diamond luminescence) for new monitoring techniques in accelerators as well as exploration of unconventional applications in society (medicine, biotechnology, quantum computing ...)
- Strict co-operation with WP 14 (Task 14.4)

 PowerMat is already up and running: WP kick-off meeting due tomorrow, following a preparation meeting on 1 February 2017.

Thank you!

Deliverables

- Task 17.2 Comparative compendium of the developed materials [month 40]
- Task 17.4) Report on simulations on irradiation effects [month 44]
- Task 17.3) Irradiation test results: Beam impact on new material and composite [month 46]
- Task 14.4) Production of material samples (as large as possible for each industry to demonstrate workability) [month 24]

Milestones

- Task 17.1) Organisation of PowerMat kick-off meeting, with publication of talks on Web [month 6]
- Task 17.2) Material characterisation, with publication of results on Web [month 18-24]
- Task 17.3) Irradiation, with publication of report on web[month 27]
- Task 17.4) Irradiation effects analysis, with publication of report on web[month 36]
- Task 17.5) Report on studies, with publication of report on web, [month 46]
- Task 14.4) Prepare first samples [month 12]

Task	Year 1			Year 2			Year 3			Year 4						
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
17.1		Μ														
17.2							Μ						D			
17.3									Μ							D
17.4												Μ		D		
17.5																Μ
1.4				М				D								

Task 17.1 Coordination and Communication

Coordinators: A. Bertarelli, CERN; M. Tomut, GSI

- Coordination of JRA tasks, interface with other work packages (specifically WP14), public outreach, knowledge transfer etc.
- Budget management
- Monitoring task progress. Adherence to milestones and timely reporting of deliverables

Irradiation tests with online monitoring of properties evolution (GSI)

A. Bertarelli – Collimation Material and Design Readiness for LS2 – 2 May 2017

Hydrodynamic simulations of experiments - EOS, spall strengths for new materials

A. Bertarelli – Collimation Material and Design Readiness for LS2 – 2 May 2017