TA SD Shower Front

1

高木芳紀(大阪市立大学)

Outline

• TA 地表検出器(SD)とは

➤ TA SDの構成

- 空気シャワー観測
 - ➢ SDを用いた空気シャワー観測
 - ▶ シャワー粒子の到来時刻、粒子数の計算
- ・ 空気シャワーフロントの構造研究
 - ▶ シャワー軸からの距離と粒子の到来時刻の遅れの関係
 - ▶ 距離ごとの到来時刻の遅れの様子
- ・まとめと今後

Telescope Array実験

- ・米国ユタ州
- 2008年5月~
- 507台の地表検出器(SD)
- 38台の大気蛍光望遠鏡(FD)

TA 地表検出器(SD)の構成

TA 地表検出器(SD)の構成

TA 地表検出器(SD)の構成

SDを用いた空気シャワーの観測

各SDでのシャワー粒子の到来時刻と粒子数の計算 到来時刻の計算

FADC値からペデスタル値を引いた値が8ビン連続してペデスタル

の1.5σを超えたときを立ち上がり(到来時刻)、8ビン連続して

下回ったときを立ち下がりとする

粒子数の計算

立ち上がり時間~立ち下がり時間までFADC値を積分 FADC値から粒子数へ変換係数を用いて変換

各SDでのシャワー粒子の到来時刻と粒子数の計算 到来時刻の計算

FADC値からペデスタル値を引いた値が8ビン連続してペデスタル

の1.5σを超えたときを立ち上がり(到来時刻)、8ビン連続して

下回ったときを立ち下がりとする

粒子数の計算

立ち上がり時間~立ち下がり時間までFADC値を積分 FADC値から粒子数へ変換係数を用いて変換

研究のモチベーション

空気シャワーフロントの構造がシャワー軸からの 距離によってどのように変化するかをTASDのデータ を用いて調べる 宇宙線の到来方向を計算する際に用いている シャワーフロントの構造を表す関数をTASDのデータ を反映したものに変更する

シャワー軸からの距離と粒子の到来時刻の遅れの 関係を調べる

パラメーターに関して

s:シャワー軸からの距離 T_D:シャワー平面からの遅れの時間

11

今回用いたデータセットに関して

TASD7年分(2008/05/11~2015/05/11)のデータを使用 イベントセレクションとして以下の選別条件を用いた。

ApJ 768:L1 (2013)

- energy > 1 EeV
- $\theta < 45$ degree
- X^2 / ndf < 4
- σ s800 / s800 < 0.25
- # of SD > 5
- $\theta_{\rm err} < 5^{\circ}$
- core position> 1200 m from edge of array
- # of events : 23854

エネルギー分布

logE (eV) = 19.0のイベントに関して考える。 ただし、SDのエネルギー決定時の不確かさ±21%を もたしている。

シャワー軸からの距離sと遅れT_Dの関係

シャワー軸からの距離sとシャワー平面からの遅れの時間 T_Dをそれぞれ計算し、シャワー軸からの距離が0~2km の範囲で横軸にシャワー軸からの距離、縦軸に遅れの 時間をとりプロットする。

天頂角でイベントをセレクトする。 1.0 \leq sec θ < 1.1, 1.1 \leq sec θ < 1.2, 1.2 \leq sec θ < 1.3, 1.3 \leq sec θ

以後# of SDsとしてSDの数で 事象数を表す。

シャワー軸からの距離sと遅れTDの関係

シャワー軸からの距離sと遅れTnの関係

シャワー軸からの距離sと遅れTnの関係

シャワー平面からの遅れT_Dを、シャワー軸からの距離 0~2 kmまで100 mごとに ヒストグラムを描き、ヒストグラムの形を調べた

条件

 $E = 10^{19.0} \, eV$, $1.0 \leq sec\theta < 1.1$, $\# of \, SDs = 4664$

シャワー軸からの距離ごとの遅れ

上図は0~100 m 下図は1900~2000 m シャワー軸からの距離が 遠くなるにつれて遅れる 方にtailを引いている

SD条件でのカットが必要

まとめと今後

- シャワー軸からの距離とシャワー平面からの遅れの
 関係について天頂角ごとにプロットしてシャワーフロントの構造を調べた
- シャワー軸からの距離100 mごとに遅れのヒストグラム
 を描き、その様子を調べた
 - →シャワー軸からの距離が遠くなるにつれて遅れる方に tailを引くようになる

→SDでのカットをかける必要がある

実データを反映したシャワーフロントの構造を表す関数
 を考えていく

Back Up

トリガー効率のエネルギー依存性

N. Sakurai, et al., Proc. of 30nd ICRC., vol.5,1159(2007).

イベントトリガーの判定

イベントトリガーの判定

APJ 768:L1 セレクション条件に関して

天頂角 θ 、方位角 φ をFittingで計算する際にMINUIT package というものを用いている。

計算した際に不確かさとして σ_{θ} 、 σ_{φ} が得られる。

$$Q_{err} = \sqrt{S_q^2 + \sin^2 Q S_j^2}$$

AGASAのLateral Distribution Functionを用いて*S800*を計算 (上記同様にMINUIT packageを使用)した際に不確かさ σ_A が 得られる(*A* はAGASA LDFの規格化定数) この σ_A 、*A*を用いて $\sigma_{S800}/S800 = \sigma_A/A$ を計算している

解析時の座標系について

コア位置や、コアの到来時刻、天頂角、方位角 を計算する際、座標系としてはCLFのZ座標を 0としたX-Y平面で考えている.

パラメーターに関して

- シャワー軸 シャワーフロン - 宇宙線の到来方向 コア位置: R = (R_x, R_y, 0) 軸 - シャワー軸と地面の交点 シャワー平面 • $R_{COG} = ((R_{COG})_x, (R_{COG})_v, 0)$ 重心の座標 SD • T₀ t_i , (vmip)_i R, T_0 - コアの到来時刻
 - t_i - SDに粒子が到来した時刻
- (vmip)_i
 SDに到来した粒子数

パラメーターに関して

- シャワー軸 シャワーフロン - 宇宙線の到来方向 コア位置: R = (R_x, R_y, 0) ·軸 シャワ - シャワー軸と地面の交点 シャワー平面 • $R_{COG} = ((R_{COG})_x, (R_{COG})_v, 0)$ 重心の座標 SD • T₀ t_i , (vmip)_i R, T_0 - コアの到来時刻
 - t_i - SDに粒子が到来した時刻
- (vmip)_i
 SDに到来した粒子数

パラメーターに関して

ジオメトリの計算

 $r_i = 各検出器の位置、($ *vmip* $)_i = 各検出器の粒子数$

ジオメトリの計算

\$ 2

$$C_{G}^{2} = \hat{\Box} \frac{(t_{i} - t_{i}^{T})^{2}}{\sqrt{S_{e}^{2} + S_{t}^{2}}} + \frac{(R - R_{COG})^{2}}{(170[m])^{2}}$$

$$t_{i}^{FIT} = T_{0} + t \pm T_{trans}$$

$$t = 8 \hat{} \hat{} (1 + \frac{s}{30[m]})^{1.5} \hat{} vmip^{-0.5} \hat{} 10^{-10}$$

$$S_{t} = 7 \hat{} \hat{} (1 + \frac{s}{30[m]})^{1.5} \hat{} vmip^{-0.3} \hat{} 10^{-10}$$

$$\hat{} = \hat{1} \hat{} \hat{} (1 + \frac{s}{30[m]})^{1.5} \hat{} vmip^{-0.3} \hat{} 10^{-10}$$

$$\hat{} = \hat{1} \hat{} \hat{} (1 + \frac{s}{30[m]})^{1.5} \hat{} vmip^{-0.3} \hat{} 10^{-10}$$

$$\hat{} = \hat{1} \hat{} \hat{} \hat{} (1 + \frac{s}{30[m]})^{1.5} \hat{} vmip^{-0.3} \hat{} 10^{-10}$$

$$\hat{} = \hat{1} \hat{} \hat{} \hat{} \hat{} \hat{} (1 + \frac{s}{30[m]})^{1.5} \hat{} vmip^{-0.3} \hat{} \hat{$$

 $FIT \ge 2$

- 1. χ_G²を左式のように定義する。 ここで、パラメーターαは 空気シャローフロントの構造な
 - 空気シャワーフロントの構造を 表すパラメーター
- χ_G²を計算して最小になるときの 天頂角、方位角、T₀を選ぶ
- 式中の

 てはAGASAの経験式を

 TA用

 に変形したもので

 σ_τは標準偏差

ジオメトリの計算

$$C_{G}^{2} = \bigotimes_{e}^{2} \frac{(t_{i} - t_{i}^{FIT})^{2}}{\sqrt{S_{e}^{2} + S_{t}^{2}}} + \frac{(R - R_{COG})^{2}}{(170[m])^{2}}$$

$$t_{i}^{FIT} = T_{0} + t \pm T_{trans}$$

$$t = \bigotimes_{i}^{2} (1 - \frac{c \uparrow T_{trans}}{12 \uparrow 10^{3}[m]})^{1.05 \uparrow} (1 + \frac{s}{30[m]})^{1.35 \uparrow} \Gamma^{-0.5}$$

$$S_{t} = (1.56 \uparrow 10^{-3}) \uparrow (1 - \frac{c \uparrow T_{trans}}{12 \uparrow 10^{3}[m]})^{1.05 \uparrow} (1 + \frac{s}{30[m]})^{1.5 \uparrow} \Gamma^{-0.3}$$

1. χ_{G}^{2} を上式のように定義する(ここで α はフリーパラメーター) 2. χ_{G}^{2} を計算して最小になるときの天頂角、方位角、 T_{0} を選ぶ

コア位置の計算

42

$$C_{L}^{2} = \hat{\Theta} \frac{(vmip_{i} - r_{i})^{2}}{S_{r_{i}}^{2}} + \frac{(R - R_{COG})^{2}}{(170[m])^{2}}$$

$$S_{r} = \sqrt{0.56r + 6.3r} 10^{-3}r^{2}$$

$$r = A(\frac{s}{91.6[m]})^{-1.2}(1 + \frac{s}{91.6[m]})^{-(h-1.2)}(1 + \frac{\acute{\theta}}{\acute{\theta}}\frac{s}{10^{3}[m]}\overset{\textrm{``}}{\textrm{``}})^{-0.6}$$

$$h = 3.972 - 1.792(\sec q - 1)$$

1. 横方向分布にLinsleyの式を用いたχ_L²を上記のように定義する。(*A*はフリーパラメーター)
 2. χ_L²を計算して最小になる時のコア位置Rを選ぶ