

FAST Fluorescence detector Array of Single-pixel Telescopes Fluorescence detector Array of Single-pixel Telescopes (+ Surface detector array of Layered Observational Water-cherenkov counters)

T. Fujii, M. Malacari, J. Albury, J.A. Bellido, J. Farmer, A. Galimova, P. Horvath, M. Hrabovsky, D. Mandat, A. Matalon, J.N. Matthews, M. Merolle, X. Ni, L. Nozka, M. Palatka, M. Pech, P. Privitera, P. Schovanek, S.B. Thomas, P. Travnicek

Intermediate composition or models, no information above 10^{19.7} eV

A. Porcelli, ICRC 2015, A. Yushkov, ICRC 2015, PRD 90 122005 (2014)

Highlights on UHE Photon/Neutrino

Top-down model disfavored, close to GZK photon/neutrino

C. Bleve ICRC 2015

H. Sagawa ICRC2015, T. Nonaka UHEAP2016

On-going Upgrade: AugerPrime Install 4 m² Scintillator to measure the mass composition by SD.

R. Engel ICRC2015, R. Smida UHEAP2016

JEM-EUSO

A. Olinto, ICRC2015

Extreme Universe Space Observatory onboard Japanese Experiment Module

Orbit altitude: ~400km

J.H. Adams Jr. et al., Physics 44 (2013) 76–90

Exposure and Full Sky Coverage TA×4 + Auger **JEM-EUSO** : pioneer detection from space and sizable increase of exposure **Detectors**

10 - 20 years

Next Generation Observatories In space (100×exposure): EUSO-NEXT Ground (10×exposure with high quality events): Giant Ground Array, FAST

Physics Goal and Future Prospects Particle Interactions at the Highest Energies

5 - 10 years

Detector R&D Radio, SiPM,

Low-cost

"Precision" Measurements

AugerPrime

Low energy enhancement (Auger infill+HEAT+AMIGA, TALE+TA-muon+NICHE)

◆ Target : > 10^{19.5} eV, ultra-high energy cosmic rays (UHECR) and neutral particles + Huge target volume \Rightarrow Fluorescence detector array Fine pixelated camera

Single or few pixels and smaller optics

Fluorescence detector Array of Single-pixel Telescopes

Too expensive to cover a huge area

Low-cost and simplified/optimized FD

Fluorescence detector Array of Single-pixel Telescopes

Fluorescence detector Array of Single-pixel Telescopes

Each telescope: 4 PMTs, 30°×30°
field of view (FoV).

Reference design: 1 m² aperture,
15°×15° FoV per PMT

Each station: 12 telescopes, 48 PMTs, 30°×360° FoV.

- Deploy on a triangle grid with 20 km spacing, like "Surface Detector Array".
- If 500 stations are installed, a ground coverage is ~ 150,000 km².

 Geometry: Radio, SD, coincidence of three stations being investigated.

FAST Exposure

 Conventional operation of FD under 10~15% duty cycle

+ Target: >10^{19.5} eV

 Observation in moon night to achieve 25% duty cycle,

+ Target: >10^{19.8} eV = Super GZK events (Hotspot/ Warmspot)

 Test operation in moon night with Auger FD (R. Smida)

◆ Ground area of 150,000 km² with 25% duty cycle = 37,500 km²

Preliminary

2040

Physics Target

Window of Opportunity at EUSO-TA

Telescope Array site Black Rock Mesa station EUSO-TA telescope

Temporally use the EUSO-TA optics at the TA site.

Two Fresnel lenses (+ 1 UV acrylic plate in front for protection)

★ 1 m² aperture, 14°×14° FoV \= FAST reference design.

Install FAST camera and DAQ system at EUSO-TA telescope.

 Milestones: Stable observation under large night sky backgrounds, UHECR detection with external trigger from TAFD.

FAST camera

- ♦ 8 inch PMT (R5912-03, Hamamtsu)
- ◆ PMT base (E7694-01, Hamamatsu)
- Ultra-violet band pass filter (MUG6, Schott)

FAST DAQ System

TAFD external trigger, 3~5 Hz

- Struck FADC 50 MHz sampling, SIS3350
- GPS board, HYTEC GPS2092

Amplifiers 777, Phillips scientific R979 CAEN Signal×50 Signal×10

Anode & dynode Signal

Camera of FAST

High Voltage power supply, N1470 CAEN

> All modules are remotely controlled through wireless network.

Start observation

Results on the First Field Observation

Data set: April and June 2014 observation, 19 days, 83 hours

Very stable observation under large night sky backgrounds

+ Laser detection to confirm a performance of the prototype

◆ UHECR search : 16 candidates coincidence with TA-FD

 Very successful example among Telescope Array, JEM-EUSO, Pierre Auger Collaborations.

Confirmed milestones by EUSO-TA Telescope

 Stable operation under high night sky backgrounds.

UHECR detection.

Next milestones by new full-scale FAST prototype

Establish the FAST sensitivity.

 Detect a shower profile including Xmax with FAST

Full-scale FAST Prototype

(Olomouc, Czech Republic)

Full-scale FAST Prototype

FOV = 25°x 25°

1m² aperture

UV band-pass filter

8 inch PMT camera (2 x 2)

T camera Segmented primary mirror
2) Joint Laboratory of Optics in Olomouc, Czech Republic¹⁸

FAST試作機設置 2016年10月

http://www.fast-project.org

I. MARRIER

Produced by D. Mandat and M. Malacari

SSV19

GLASS

FAST試作機設置 (2016年10月)

Aerial photos

detector Array of Single-pixel Telescopes

た外部トリガーによるデータ収集を実施

km先の垂直紫外線レーザーが視野内に入る

+62194 -> 4290 -> 3950 -> 389 -> 90 events

ベント選別:2016年10月5日

◆ カットなし->PMT信号あり->飛行機除去(>35 µs)->レーザー事象除去->2つ以上のPMT信号あり

Azimuth angle [degree]

Fluorescence detector Array of Single-pixel Telescopes

UHECR, $\log E = 18.55$

遠隔操作による観測

luorescence detector Array of Single-pixel Telescopes 方向ごとの感度(レイトレース) N_{p.e.} / (100 ns) 20 15 10 0.7 center [deg] 15 100 0.6 10 (100 ns) 0.5 25 0.4 20 0.3 15 0.2 10 Eleva 0.1 5 **0** -15 -10 10 15 100 -5

Azimuth from FOV center[deg]

Install FAST at Auger and TA for a cross calibration.

Arrav of Sinole-pixel Telesco

Profile reconstruction with geometry given by SD (smearing gaussian width of 1° in direction, 100 m in core location).

• Energy: 10%, Xmax : 35 g/cm² at 10^{19.5} eV

Independent cross-check of Energy and Xmax scale between Auger and TA

10 km

Malargue 👝 Los Leones

Possible Application of the FAST Prototype

Pierre Auger Observatory

Pierre Auger Collaboration, NIM-A (2010)

Telescope Array Collaboration NIM-A (2012)

Surface detector array of Layered Observational Water-cherenkov counters

Nuclear Instruments and Methods in Physics Research A 767 (2014) 41–49

Counterpart: SLOW

Antoine Letessier-Selvon^{a,*}, Pierre Billoir^a, Miguel Blanco^a, Ioana C. Mariş^{a,b}, Mariangela Settimo^a

◆ 750 m spacing in triangular arrangement \rightarrow 10 m², 800 stations \rightarrow ~200 km² \bullet 100% efficiency above 10^{17.5} eV Energy scale calibrated with FAST

Physics Target

Hadron interaction model

Mass composition

Fluorescence detector Array of Single-pixel Telescopes (FAST) 展開して宇宙線への感度を一桁向上させる次世代宇宙線観測計画 ◆フルスケールFAST試作機による宇宙線観測開始 ◆観測を継続し、極高エネルギー宇宙線の統計量を増やす Surface detector array of Layered Observational Water-cherenkov counters ◆二層式水チェレンコフ地表粒子検出器アレイ

まとめと今後

- ◆極高エネルギー宇宙線観測に特化した新型大気蛍光望遠鏡を使い、望遠鏡アレイ

 - ◆2016年10月に試作機を設置し、観測を開始した。2017年1月から遠隔観測を実施
 - ◆現在まで128時間の観測時間を達成し、合計18事象の宇宙線候補事象を見つけた
 - ◆21km先のレーザー光源のシミュレーションとデータの比較を開始した

