

Useful Concepts and Tools

Sergei Gleyzer, University of Florida

USCMS Workshop on Open Data at UCF June 15-17, 2016

- Python
- ROOT
- CMS Detector
- Relativity and Kinematics

Python

Python:

- High level, general purpose programming language
- Very easy to get started with
- Very readable
- Less code compared to C++/Java

ROOT

ROOT:

- Software to analyze particle physics data
- Optimized for large datasets
- Histograms, statistical tools
- http://root.cern.ch

CMS Detector

Sergei Gleyzer

CMS Detector

UF Relativity and Kinematics

In 1905 Albert Einstein derived Theory of Relativity from a simple idea

- speed of light (c) is constant in all inertial frames of reference Consequences:
 - Describe particle location as 4vector: (t, x, y, z)
 - Describe particle momentum as 4-vector: (E, p_x, p_y, p_z)

Product of two 4-vectors is independent of coordinate system

• E² – p² = invariant quantity (invariant mass)

Consider particle X that decays into two particles (γ and γ)

Conservation of energy-momentum implies:

 particle X's mass = invariant mass of its decay products

Therefore expect to see a narrow spike in the invariant mass distribution where particle X is

 If γ and γ are born independently expect a broad mass spectrum without any spikes

June 15, 2016

