

Project CODER CMS Open Data Analysis EnviRonment

Sergei Gleyzer, University of Florida

USCMS Workshop on Open Data at UCF June 15-17, 2016

UNIVERSITY of FLORIDA

Outline

- What is Project CODER
- Large Hadron Collider
- CMS Experiment at CERN
- CMS Open Data
- Plan for Today

UNIVERSITY of **FLORIDA**

CMS Open Data Analysis EnviRonment

Project CODER

Interactive Analysis

- Based on JUPYTER Notebooks

- Open High Energy Physics Data
- Compact Muon Solenoid (CMS) Experiment at CERN

A Few Words About CERN

World Wide Web

Where the web was born

CERN

Recurring theme of threes:

What?

Where?

Why?

A A	Quarks Neutron	Hydrogen nu	cleus Hydroger	n atom Prot	ogalaxy	- <u>(</u>
Electron		Proton He	lium nucleus	Helium atom		
	T	IE BIG	BANG	THEOR	NY 🥢	Gala
TIME BEGINS	10-32 core	10-9 sec	2 min	300.000 vrs.	1 billion yrs.	15 billion yrs.
Time 10-45 g	10 ⁻⁵² sec.	10 ¹³ °C	10 ^{8°} C	10,000°C	-200°C	-270°C
Temperature			Chill have been	Flectrons	C Gravity makes	7 As galaxies
Temperature 1 The cosmos goes through a superfast "inflation," expanding from the size of an atom to that of a grapefruit in a tiny fraction of a second	2 Post-inflation, the universe is a seething, hot soup of electrons, quarks and other particles	3 A rapidly cosmos permits quarks to clump into protons and neutrons	4 to form into atoms, charged electrons and protons prevent light from shining: the universe is a superhot fog	Combine with protons and neutrons to form atoms, mostly hydrogen and helium. Light can finally shine	• hydrogen and helium gas coalesce to form the giant clouds that will become galaxies; smaller clumps of gas collapse to form the first stars	cluster together under gravity, the first stars die and sp heavy elements into space; thes will eventually form into new stars and planet

NOTE: The numbers in cosmology are so great and the numbers in subatomic physics are so small that it is often necessary to express them in exponential form. Ten multiplied by itself, or 100, is written as 10². One thousand is written as 10³. Similarly, one-tenth is 10⁻¹, and one-hundredth is 10⁻².

٥.

6

TIME Graphic by Ed Gabel

Where?

Why?

Large Hadron Collider

- **UF Large H** Crown jewel of modern science:
- State of the art in science and engineering
- **Operating since 2010**
- expected to run for next
 20(+) years
- Amazing success of an international collaboration of thousands of scientists from across the world

UF How Large is the LHC?

UF UNIVERSITY OF Large Hadron Collider

What?

Where?

Why?

If the protons and neutrons in this picture were 10 cm across, then the quarks and electrons would be less than 0.1 mm in size and the entire atom would be about 10 km across.

Standard Model

Extremely accurate theory of particles and interactions

Staggering precision to many decimal points in all kinds of predicted observables

Around since 1970s

 Many missing predicted particles found since then (t, c, g, Z, W)

The Higgs Boson

In 1964 Peter **Higgs (and others)** predicted the existence of a new particle (and field) that can explain how all other particles acquire mass

UNIVERSITY of **FLORIDA**

The Higgs Boson

A Higgs Event

A Higgs Event

June 15, 2016

UCF CMS Open Data Workshop

CMS Experiment at LHC, CERN Data recorded: Thu Oct 13 03:39:46 2011 CEST Run/Event: 178421 / 87514902 Lumi section: 86 CMS $(Z_1) E_T : 8 GeV$ $\mu'(Z_1) p_T : 28 \text{ GeV}$ 7 TeV DATA $4 \mu + \gamma$ Mass : 126.1 GeV $\mu^{+}(Z_2) p_T : 6 \text{ GeV}$ $\mu'(Z_2) p_T : 14 \text{ GeV}$ $\mu^{+}(Z_1) p_T : 67 \text{ GeV}$

UF Standard Model (2016)

Energy Budget

Distance

Most of the stuff (95%) is currently missing from the Standard Model

June 15, 2016

What determines particle masses?

Are there new particles?

Where do observed symmetries come from?

Why is gravity so weak?

What is Dark Matter/Dark Energy?

The Large Hadron Collider is again collecting data this summer after a short shutdown

Particle collision energy is 13 TeV (tera electron volts)

Higher collision energy means higher probability to create interesting (rarer) events. More data will hopefully bring more discoveries.

How Big is Big Data?

Collected more data in the first two weeks

than was collected in the history of astronomy

UCF CMS Open Data Workshop

Sergei Gleyzer

Large Synoptic Survey Telescope

3200 Megapixel camera

Will create a movie of the sky in different frequencies for ~10 years

Data-taking expected to begin in 2022

Large Synoptic Survey Telescope

June 15, 2016

UCF CMS Open Data Workshop

Office of Science and Technology Policy

About OSTP

Pressroom

OSTP Blog | Divisions

Initiatives

R&D Budgets

Reso

Expanding Public Access to the Results of Federally ^{Subsc} Funded Research

Posted by Michael Stebbins on February 22, 2013 at 12:04 PM EDT

The Obama Administration is committed to the proposition that citizens deserve easy access to the results of scientific research their tax dollars have paid for. That's why, in a policy memorandum released today, OSTP Director John Holdren has directed Federal agencies with more than \$100M in R&D expenditures to develop plan to make the published results of federally funded research freely available to the public within one year of publication and requiring researchers to better account for and manage the digital data resulting from federally

LHC Open Data

CERN Accelerating science

	Juden		rs S	cientists	CERN people	:	
Accelerators E	xperiments	Physics	Computing	Engineering	Updates		
\wedge				•		•	

CERN makes public first data of LHC experiments

Posted by Cian O'Luanaigh on 20 Nov 2014. Last updated 20 Nov 2014, 16.59. Voir en français

BOUT CERN	
bout CERN	
omputing	
ngineering	
xperiments	
low a detector works	

CERN UPDATES

LHC filling with liquid helium at 4 kelvin 17 Dec 2014

CERN's Large Hadron Collider gears up for run 2

Since 2014 CMS has released all its collected collision data from 2010 and 2011 runs

opendata

http://opendata.cern.ch

- Same format as used by physics analyses with tools and basic instructions
- also some simulated (Monte Carlo) data

UF JUPYTER Notebooks

- Open source web-based application blends code with elements such as text, figures, links
 - Excellent integration of instructions and executable code
 - Great for interactive analysis and teaching demonstrations of anything that involves code
 - Can be run locally, on a server, laptop or smartphone
 - All you need is a browser

UNIVERSITY OF FLORIDA

- Start with Python programming using
 Jupyter notebooks
 A short primer on ROOT
- Useful Particle Physics Concepts
- LHC Event Displays

Today, Tomorrow:
 Basic Examples of CMS Open Data Analysis