

Neutron Electric Dipole Moment

A key to the Baryon Asymmetry of the Universe

Malgorzata Kasprzak on behalf of the nEDM collaboration

Isolde Seminar, CERN, 08.03.2017

Cosmological models and Big Bang

1928: Paul Dirac predicts antimatter

- 1932: Carl Anderson discovers positrons
- 1955: antiproton and antineutron found at Bevatron
- 1957: Prove of the CPT theorem
- 1964: cosmic microwave background (CMB) radiation (Penzias and Wilson)

Edwin Hubble, 1924, Observation of the expanding Universe

Georges Lemaitre, 1927 primeval "super-atom" theory

"...we could conceive the beginning of the universe in the form of a unique atom, the atomic weight of which is the total mass of the universe."

Primordial antimatter searches

Bullet Cluster, picture: NASA,

Baryon Asymmetry of the Universe (BAU)

Baryon Asymmetry of the Universe (BAU)

R. H. Cyburt et al, Rev. Mod. Phys. 88, 015004 (2016)

Matter-antimatter symmetry in Universe

$$\eta = \frac{n_B - n_{\overline{B}}}{n_{\gamma}} = (6.19 \pm 0.14) \times 10^{-10}$$

Perfectly symmetric Universe

$$\frac{n_{\rm B}-n_{\overline{\rm B}}}{n_{\gamma}}=0$$

Theoretical predictions:

$$\frac{n_{\rm B}-n_{\rm \overline{B}}}{n_{\gamma}} \leq 10^{-18}$$

KU LEUVEN

How to explain an excess of matter over antimatter in our universe?

Different laws of physics for matter and for antimatter

CP violating (CPV) signatures

- High energy physics
- Electric dipole moments
 - Neutrino physics

CP violation in the Standard Model (SM) and Beyond

CPV in weak interactions, discovered by J. Cronin and V. Fitch in 1964 – too small to explain BAU

CP violating δ – term

 $\begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$

First hint of CP violation in baryons (up to now only mesons) – LHCb collaboration, Nature 2017

CP violation in the Standard Model (SM) and Beyond

• CPV in QCD (θ term)

$$d_n \sim \theta \times 10^{-17} \mathrm{e} \cdot \mathrm{cm} \qquad \theta < 10^{-9}$$

- CPV in lepton sector
- CPV in SUSY

CP violation and EDM's

CP violation and EDM's

KU LEUVEN

• Current limits on EDM's and CP violating phases

Parameter	¹⁹⁹ Hg bound	Hg theory	Best alternate limit
\tilde{d}_a (cm) ^a	6×10^{-27}	[15]	n: 3×10^{-26} [3]
d_p^{\prime} (e cm)	7.9×10^{-25}	[16]	TlF: 6×10^{-23} [17]
C_{S}	$5.2 imes 10^{-8}$	[18]	Tl: 2.4×10^{-7} [19]
$\overline{C_P}$	5.1×10^{-7}	[18]	TlF: 3×10^{-4} [1]
C_T	1.5×10^{-9}	[18]	TlF: 4.5×10^{-7} [1]
$\bar{ heta}_{ m OCD}$	3×10^{-10}	[20]	n: 1×10^{-10} [3]
d_n (e cm)	5.8×10^{-26}	[16]	n: 2.9×10^{-26} [3]
$d_e (e \mathrm{cm})$	3×10^{-27}	[21,22]	Tl: 1.6×10^{-27} [18]
ar 19911	\tilde{i} (\tilde{i})	\tilde{I}) 1.1 C	\tilde{i} (0 \tilde{i} i i \tilde{i}

^aFor ¹⁹⁹Hg, $\tilde{d}_q = (\tilde{d}_u - \tilde{d}_d)$, while for n, $\tilde{d}_q = (0.5\tilde{d}_u + \tilde{d}_d)$.

W. C. Griffith et al, PRL 102, 101601 (2009)

Neutron EDM and CP violation

$$QM$$

$$d_{n}\vec{E}\cdot\frac{\vec{\sigma}}{\sigma}\xleftarrow{T}-d_{n}\vec{E}\cdot\frac{\vec{\sigma}}{\sigma}$$

$$\vec{\sigma}\xleftarrow{T}-\vec{\sigma}$$

$$\vec{E}\xleftarrow{T}\vec{E}$$

• Time reversal violation translates into CPV if the CPT symmetry is valid

nEDM prediction and measurements

Upper limit on nEDM :

 $d_n < 3 \times 10^{-26} e \ cm$

 $d_{n} \approx 10^{-31} e \ cm$

Standard Model :

New Physics scenarios :

$$d_n \approx 10^{-27} - 10^{-28} e \ cm$$

Pendlebury et al., PRD92 (2015) 092003

KU LEU

Ultracold neutron source and nEDM experiment at the Paul Scherrer Institute

Ultracold neutron source and nEDM experiment at the Paul Scherrer Institute

KU LEUVEN

$$\lambda_n = h / (m_n v)$$
 $\lambda_n > 80 nm$ $E_k = m_n v^2 / 2 < 300 neV$

$$\lambda_n = h / (m_n v)$$
 $\lambda_n > 80 nm$ $E_k = m_n v^2 / 2 < 300 neV$

$$\left(V_F\left(\vec{r}\right) = \frac{h^2 b_{coh} N}{2\pi m_{r}}\right)$$

$$n = \sqrt{1 - \frac{V}{E_k}}$$

$$\lambda_n = h / (m_n v)$$
 $\lambda_n > 80 nm$ $E_k = m_n v^2 / 2 < 300 neV$

$$n = \sqrt{1 - \frac{V}{E_k}} \quad \begin{cases} V_F(\vec{r}) = \frac{h^2 b_{coh} N}{2\pi m_n} \\ V_M(\text{neV}) = -\vec{\mu}_n \cdot \vec{B} = \pm 60 \ B \ (\text{T}) \end{cases}$$

KU LEUVEN

$$\lambda_n = h / (m_n v)$$
 $\lambda_n > 80 nm$ $E_k = m_n v^2 / 2 < 300 neV$

$$n = \sqrt{1 - \frac{V}{E_k}} \begin{cases} V_F(\vec{r}) = \frac{h^2 b_{coh} N}{2\pi m_n} & \text{for } \vec{r} \\ V_M(\text{neV}) = -\vec{\mu}_n \cdot \vec{B} = \pm 60 \ B \ (\text{T}) & \text{for } \vec{r} \\ V_g(\text{neV}) = m_n g H = 103 \ H(\text{m}) & \text{for } \vec{r} \end{cases}$$

Ultracold neutron production

Ultracold neutron production

Ultracold neutron production

 $\mu_n = 60 \text{ neV/T}$ $\vec{B} = 1 \ \mu \text{T}$ $\nu_B \approx 29 \,\text{Hz}$

High-precision measurements of magnetic field

$$v_n = \frac{2\mu_n}{h} \left| \vec{B} \right| \pm \frac{2d_n}{h} \left| \vec{E} \right|$$
$$B_+ \left| = \left| B_- \right| \Longrightarrow d_n = \frac{h}{4 \left| \vec{E} \right|} \left(v_n^+ - v_n^- \right)$$

 $\sigma_{\rm B} < 10^{-14} \, {\rm T} \, (10 \, {\rm fT})$

Ramsey method in time space

Neutron resonance frequency

nEDM apparatus

Cos-theta coil

Magnetic fields

Magnetic shielding in nEDM

Magnetic shield Surrounding field coils Air-conditioned non-magnetic house

Magnetic field control in nEDM

09/06/2017

30

 $\sigma(d_{meas}) \approx 1.1 \times 10^{-25} \,\mathrm{e} \cdot \mathrm{cm/day} \ (288 \text{ measurements})$

 $\sigma(B) < 170 \text{ fT in a single measurement}$

Hg co-magnetometer

Magnetic field correction

Gravitational shift

$$R \approx \frac{V_n}{V_{Hg}} \left(1 \pm \Delta h \frac{\partial B_z / \partial z}{B} \right)$$

$$d_{meas} = d_n \pm k(\mathbf{R} - \mathbf{R}_0)$$

Cs magnetometers

Cs magnetometers

Single laser operation

Cs magnetometers

1880

B 1800

1780L____0

260

B 180

160^L0

-1900

(Ld) +224 (b) -1934 -1940 -1960 -1960

a -1980

-2000^L_0

-200

(L⁻²²⁰ 42-240 -260

¹₀₋₂₈₀

-300 L

-2100

ا 10 –2180

-2200^L_0

80,000

time (s)

120 000

0

80 000

time (s)

-800

40 000

80 000

time (s)

120 000

 B_{z}

The multipole expansion of the B_z component is used with the aim of obtaining $\partial B_{z} / \partial z$.

The B_{z} measured by a ¹³³Cs magnetometer at the position (x,y,z) is expressed as

$$(x, y, z) = B_{z} + g_{x}x + g_{y}y + g_{z}z +$$

$$g_{xx}(x^{2} - z^{2}) + g_{yy}(y^{2} - z^{2}) +$$

$$g_{xy}xy + g_{xz}xz + g_{yz}yz$$

Gradient

Crossing point analysis

Statistical sensitivity in the running experime

Accumulated raw sensitivity

2015: 1.7×10^{-26} ecm **2016:** 1.1×10^{-26} ecm **Total:** 0.94×10^{-26} ecm

(values from simple fit)

Next step: new setup and increased sensitivity

- Double precession chamber
- Better adaptation to the UCN source
- Stronger electric field
- Hg co-magnetometer in both chambers with laser read-out
- Cs arrays on ground potential (>50 sensors)

New magnetic shield

New setup inside new magnetic shield

Conclusions

- Search for a neutron EDM probes the New Physics
- The existence of a nEDM has cosmological implications on BAU
- nEDM@PSI is running with the world's best sensitivity (accumulated sensitivity of 1.16 x 10⁻²⁶ e.cm) and expecting to deliver a new nEDM upper limit soon
- Upgrade of the nEDM@PSI in the next years with an ultimate aim of 5 x 10⁻²⁸ e.cm

nEDM collaboration

Thank you for your attention

