DP ProtoDUNE Technical Design Review 24th April 17

C.Cantini on behalf of ETHZ Group
Slow control design for the ProtoDUNE-DP Detector

- List of sensors, items, instrumentation
- Distribution of sensors on Charge Readout Plane and in Tank
- Instrumentation flange (INS), Tank Instrumentation flange (TANK INS)
- Connectors, internal cabling
- Middle HV system
- Patch panel
- Pulsing system
- Level meter system
- Heaters
- Camera
- Purity Monitor
Based on sensors list and previous experience with 311 Detector, design for Flanges hosting CRP INS and TANK INS.

4 x CRP INS flange dedicated to:
- Slow control signals (temperatures, LAr level meters, distance meters)
 - Connectors as 311 Detector
 - Improving internal cabling
- Heaters Charge Readout Plane
- Middle High Voltage for LEM biasing
- Pulsing system

2 x TANK INS dedicated to:
- Heaters Bottom, on the membrane
- Purity monitors
- Power for PMTs
- Power for LEDs
- Cameras

Penetrations defined:
- 80 mm dia, CF250 flange for CRP INS
- 230 mm dia for TANK INS

A tee or cross will be needed, both for CRP INS and TANK INS.
<table>
<thead>
<tr>
<th>Sensors/Items</th>
<th>No. Items per CRP module</th>
<th>Cables</th>
<th>CODE</th>
<th>No. of cables</th>
<th>Diameter</th>
<th>Connector on patch panel IN</th>
<th>Connector on patch panel OUT</th>
<th>Cables</th>
<th>CODE</th>
<th>Flanges</th>
</tr>
</thead>
<tbody>
<tr>
<td>x4 Thermometers (6 Pts)</td>
<td>6</td>
<td>3M 50 way Twisted Ribbon Cable, 1.27 mm pitch, AWG 28</td>
<td>RS 111-8900</td>
<td>3</td>
<td>63.5mm</td>
<td>SUBD 50 pins</td>
<td>SUBD 50 pins</td>
<td>3M 50 way Twisted Ribbon Cable, 1.27 mm pitch, AWG 28</td>
<td>RS 111-8900</td>
<td>SUBD 50 pins</td>
</tr>
<tr>
<td>Temperature for heaters</td>
<td>4</td>
<td>3M 50 way Twisted Ribbon Cable, 1.27 mm pitch, AWG 28</td>
<td>RS 111-8900</td>
<td>1</td>
<td>21mm</td>
<td>SUBD 50 pins</td>
<td>Patch Panel 1</td>
<td>SUBD 50 pins</td>
<td>Patch Panel 1</td>
<td>RS 111-8900</td>
</tr>
<tr>
<td>Capacitive level meters</td>
<td>4</td>
<td>CABLE COAXIAL 50 OHM - RG316U</td>
<td>RS 260-5607</td>
<td>8</td>
<td>4.2mm</td>
<td>SMA</td>
<td>SMA</td>
<td>CABLE COAXIAL 50 OHM - RG316U</td>
<td>RS 260-5607</td>
<td>8x SMA</td>
</tr>
<tr>
<td>Distance meters</td>
<td>3</td>
<td>CABLE COAXIAL 50 OHM - RG316U</td>
<td>RS 260-5607</td>
<td>6</td>
<td>4.2mm</td>
<td>SMA</td>
<td>SMA</td>
<td>CABLE COAXIAL 50 OHM - RG316U</td>
<td>RS 260-5607</td>
<td>6x SMA</td>
</tr>
<tr>
<td>Heaters</td>
<td>4</td>
<td>KAPTON INSULATED WIRE</td>
<td>311-KAP</td>
<td>8</td>
<td>2.4mm</td>
<td>AMPHENOL MDC 20 pins</td>
<td>AMPHENOL MDC 20 pins</td>
<td>KAPTON INSULATED WIRE</td>
<td>311-KAP</td>
<td>AMPHENOL MDC 20 pins</td>
</tr>
<tr>
<td>HV LEM</td>
<td>72</td>
<td>kapton insulated KAPW50ohm or micro coax</td>
<td>LewWac KAPW50</td>
<td>72</td>
<td>2.1mm</td>
<td>MACOR own Design</td>
<td>MACOR own Design</td>
<td>kapton insulated KAPW50ohm or micro coax</td>
<td>LewWac KAPW50</td>
<td>LEMO HV</td>
</tr>
<tr>
<td>Extraction Grid/FFS</td>
<td>4</td>
<td>kapton insulated ZKAPW 50ohm</td>
<td>Lewvac ZKAPWC</td>
<td>4</td>
<td>3.2mm</td>
<td>MACOR own Design</td>
<td>MACOR own Design</td>
<td>kapton insulated ZKAPW 50ohm</td>
<td>Lewvac ZKAPWC</td>
<td>LEMO HV</td>
</tr>
<tr>
<td>Sensor/Item</td>
<td>No. Items per Flange</td>
<td>Cables</td>
<td>CODE</td>
<td>No. of cables</td>
<td>Diameter</td>
<td>Connector on Flange</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------</td>
<td>--------</td>
<td>------</td>
<td>---------------</td>
<td>----------</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chain of Pts (2 composed by 12 Pts)</td>
<td>24</td>
<td>3M 50 way Twisted Ribbon Cable, 1.27 mm pitch, AWG 28</td>
<td>RS 111-8900</td>
<td>2</td>
<td>63.5mm</td>
<td>2x SUBD 50 pins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purity Monitor</td>
<td>2</td>
<td>KAPW50ohm</td>
<td>KAPW50</td>
<td>3</td>
<td>3x2.27 mm</td>
<td>6x SHV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMTs</td>
<td>18</td>
<td>RG303</td>
<td>__</td>
<td>18</td>
<td>3x4.32 mm</td>
<td>18x SHV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heaters on the bottom</td>
<td>4</td>
<td>KAPTON INSULATED WIRE</td>
<td>311-KAP Allectra</td>
<td>8</td>
<td>8x 0.6 mm</td>
<td>AMPHENOL MDC 20 pins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature for heaters</td>
<td>4</td>
<td>3M 50 way Twisted Ribbon Cable, 1.27 mm pitch, AWG 28</td>
<td>RS 111-8900</td>
<td>1</td>
<td>63.5mm</td>
<td>1x SUBD 50 pins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEDs</td>
<td>5</td>
<td>KAPTON INSULATED WIRE</td>
<td>311-KAP Allectra</td>
<td>10</td>
<td>10x 0.6 mm</td>
<td>AMPHENOL MDC 20 pins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cameras</td>
<td>3</td>
<td>Raspberry CSI cable camera</td>
<td>__</td>
<td>3</td>
<td>(CSI flat)</td>
<td>1x SUBD 50 pins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coaxial Level meters</td>
<td>1</td>
<td>CABLE COAXIAL 50 OHM - RG316U</td>
<td>RS 260-5607</td>
<td>2</td>
<td>__</td>
<td>2x SMA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure</td>
<td>1</td>
<td>1/4" Gas, Keller sensors</td>
<td>PAA21Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

24/04/2017
C.Cantini, ETHZ
Given modularity and symmetry of the CRP, the 4 CRP INS flange will be identical and also TANK INS will be identical.
CRP INS Flange

CRP INS flange dedicated to:
- Slow control signals (temperatures, LAr level meters, distance meters)
- Heaters Charge Readout Plane
- Middle High Voltage for LEM biasing
- Pulsing system, PCB board with KEL connectors on CF63
- See table in slide 3
- We have identified all the connectors

Design foresees a cross CF250 on top cap.
Plenty of room for all the connectors required for our sensors in the vessel
Design and integration of the flange not yet there, but it is not critical in terms of timescale. It can proceed while finishing the design of the middle HV flange.

Design of SC Flange 311 by Franco.
Number of connectors on CRP INS will be similar to the ones for 311 Detector.

24/04/2017
C.Cantini, ETHZ
TANK INS Flange

TANK INS dedicated to:
- Heaters bottom of membrane
- Purity monitors
- Power for PMTs
- Power for LEDs
- Cameras

Design foresees a cross CF250 on top cap also there. Plenty of room for all the connectors required for our sensors in the vessel. We know already all the weldable connectors needed and thanks to previous experience we can now implement improvements at the level of stress release system or automated system to check remotely insertion of cables. Preliminary design is now under internal review.
Middle high voltage for LEM biasing

- High Voltage 10 kV rated channels
 - TOT 288 channels, split on 4 Flanges
 - O(80) per CRP INS FT
 - NO commercial available solutions
 - Experimented several

- Collaboration with Allectra to develop a weldable connector, single sided, working (no discharge, no leak current) in GAr up to 10 kV

Test flange, prototype with 2 custom made single sided connectors:
- Special silicon cable ("power glove").
- Only available for 20 kV version.
- Tested successfully up to 20 kV in Air, GAr and Vacuum.
- A first batch of custom made coaxial thinner cables ordered, delivery time is 10 weeks from now.
- As soon as tested the design of the flange can be finalized.
- After that we have to consider other 10 weeks for production of flanges and purchasing of material (cables mainly).
Middle high voltage for LEM biasing

- Solution implemented for 311 Detector is custom made, to full fill the lack of a COTS solution to deliver 10 kV in argon gas
 - Isolation is guaranteed by epoxy glue (27 kV/mm dielectric strength)
 - Each channel tested in Gar, Air, vacuum before installation
 - Perfect isolation (E-12 Atm*cm3/s)
 - Perfect dielectric performances, no leak current (less than 1 nA) above 10 kV
 - Reproducible results
 - Still a possibility for ProtoDUNE-DP Detector

- We will start the production of a unit with 80 channels in May to cover the need of one CRP module – 2 months of production time.
- If meanwhile commercial solution outlined in previous slide will be proven then we can switch to it

- LEMO HV panel mounted connector
- Kapton isolated coax KAPW50OHM
- Bi-component epoxy glue
• PCB panel fixed on Charge Readout Plane – each module has one for sensors
• Purpose of the panel is to ease installation and cabling.
• It collects cables from:
 • Temperature sensors distributed on CRP
 • Liquid argon level meter for CRP positioning
 • Distance meter for relative alignment of modules
 • Pulsing system
• A second patch panel for LEM biasing – next slide

• Cabling in collaboration with Confectronic, Allectra and other workshops at CERN for custom made assemblies.
• Ready to be produced
• 3 weeks time from order to assembly
• 1 prototype ready mid May
A patch panel as interface in the vessel for HV

- PCB panel fixed on Charge Readout Plane – each module has one for high voltage
- Purpose of the panel is to ease installation and cabling.
- It delivers the biasing voltage for LEMs bottom and top electrodes
- To guarantee spark free contact, we developed a double macor insulated system which is isolating male pin (soldered on PCB) and receiving female on coaxial cable
- Tested in argon gas
- Same idea used to connect to high voltage the LEM electrodes
- Tested in 311 Detector and previous ETHZ experiences
- 6 weeks time from order to assembly
 - Custom made macor cylinders
 - Standard PCB
- 1 prototype ready mid June
Temperature probes

- 311 Detector has \(o(90)\) temperature probes distributed in main vessel, soldered on ribbon cable, spaced by 4 cm or arranged on “thermometers”
- 311 Detector has 45 temperature probes in the insulation space
- 4 wires method everywhere
- Pt interfaced to NI9219 modules outsides in racks

- ProtoDUNE-DP Detector has \(o(200)\) temperature sensors, distributed between CRP INS flange and TANK INS flange
- Proposing same platinum sensors, same company (IST) - demonstrated <0.1 K resolution at TLAr, CLASS Y resistors

Baseline choice for cable >
- 3M 50 way Twisted Ribbon Cable, 1.27 mm pitch, AWG 28, available through RS
- Used for resistive level meter and thermometers
- Intermediate interface at the patch panel
- Interfaced through SUBD50 weldable connectors on CRP INS and TANK INS flange to acquisition system
Temperature probes

In 311 detector we monitor the temperature:
- Along the entire drift length (resistive level meter)
- On top of anode at different heights thanks to several PCBs where 4 Pt sensors are soldered (thermometers).

For ProtoDUNE-DP a new version with 6 Pts was designed. There are also 4 resistive chains (12 Pt each) connected to TANK INS along the 6 metres drift. They will be hosted into cable trays.

Thermometers 311 Det: 4 Pts 4 installed on CRP in gas phase
Pulsing system for electronics

For 311 Detector:
Controlled distribution of pulses throughout the entire CRP thanks to a I2C controllable multiplexer. Good way of testing continuity also.
It connects to a flange on slow control chimney 2, then each twisted pair connects to a set of 32 SMD Capacitors plugged on a connector on one end of Anode. Pulses 32 channels at once.

For ProtoDUNE-DP:
Same concept.
Pulsing will be done through CRP INS Feedtru.
Differentiating boards to plug on anode: design completed (see backups).
Cabling scheme defined, material identified.
Systematic QC system on capacitors is foreseen.
Liquid argon level meter in 311 Detector

Capacitive measure. Capacitance varies depending on the status of immersion of coax and parallel plate capacitors into liquid argon. Electronics outside convert it into a 0-10 V level. In operative condition the LAr level will be in the middle of both level meters, the ones on Drift Cage and the ones on CRP. Resolution $\sigma(100\mu m)$
Position of level meter in ProtoDUNE-DP Detector

- 3x3 m² CRP: independently adjustable unit, thanks to a suspension system in closed loop with capacitive measurement
- 3x1x1 Detector
- We can measure capacitance between Grid and LEM’s bottom electrode, varying with the position of CRP across LAr level.
 - distributed measure
 - It has to be tested in 3x1x1 Detector when liquid will be there
 - Same electronics as for the parallel plate capacitor measure

ProtoDUNE-DP: 3x3 modules will have 4 LM like those on edges
To have finer resolution on CRP position a complementary approach is proposed

Relative distance between CRPs is monitored thanks to distance meters - LAPP

24/04/2017 C.Cantini, ETHZ
Favour the outgassing
Avoid GAr stratification during cool down
Kapton Insulated Flexible Heaters by Omega or Alectra
Custom made heaters foils, from few W up to hundreds each, customizable
Foreseen on top of CRP and on membrane floor
Up to 6 weeks delivery time

- Caburn multi pin panel mounted connector
- Shielded cable
- Connected internally to CRP INS flanges
- Same connectors for LEDs power on TANK INS flanges

Mounted on FR4 plate on top of CRP and glued on membrane
Cryo - Cameras – hardware

Box with:
- Fan
- Ground electrical link
- 5V power supply
- Ethernet switch
- 6 x RaspBerry module V3
- Max length tested in between camera and RaspBerry: 8 m

Each RaspBerry module:
- HDMI output
- 2x USB output
- Ethernet output
- 16 Gb SD Card with Raspian Linux OS

RaspBerry Pi and camera module
- 15 pins cable connection

Camera box build for Fermilab

2 x 3 camera modules connected to the camera box

ProtoDUNE DP: 4 cameras connected to TANK INS flange through SUBD50 connectors
• Positioned at various heights to monitor stratification of impurities
• 4 Purity monitors in the ProtoDUNE-DP Vessel
 • 2 sitting on the membrane in 2 corners
 • 2 above the middle of the drift length
• They will be fed through TANK INS flanges
• Fixation: welding anchoring plates at the corner of the Cryostat.
• For the purity monitor on the bottom there will be a support plate.
Conclusions and outlook

• We have a complete and integrated design for Slow Control of ProtoDUNE-DP Detector, consistent with what has been commissioned for 3x1x1 Detector – and already largely tested and validated at that scale.
• We have a complete list of material needed to implement the Slow Control for ProtoDUNE-DP Detector.
• The design include sensors, instrumentation, cabling, high vacuum flange and interface to the acquisition system.
• We can benefit a lot from the experience developed with past smaller scale activities and with 3x1x1 Detector.
• We can meet the schedule for the installation of the 1st CRP module within September 2017.
• We are aware that some items (specifically the middle HV system) are crucial but we think we have contingency and the alternative design already deployed for 311 Detector makes us confident we have a safety margin on that item.
Back up slides
Based on new sensors list and previous experience with 311 Detector, preliminary design for Flanges hosting CRP INS.

4 x CRP INS flange dedicated to:
- Slow control signals (temperatures, LAr level meters, pressure...)
 - Connectors as 311 Detector
 - Improving internal cabling
- Middle High Voltage (10 kV rated channels)
- Pulsing system: under consideration

Penetrations already defined: 80 mm dia, CF250 flange for CRP INS.

A tee or cross will be needed, similarly to TANK INS Flanges
Connectors and cable for electronics

Electronics: each 9 m² CRP module
Hitachi 68 c twisted pairs 0.635 mm pitch
Automated continuity test procedure during installation will be implemented

3x3 m² = 9 m² unit
36 anode 50x50 cm²
LAr level meter system in 311 Detector

- 25 mm
- x3 NIM modular
- 6x Drift Cage LM
- 7x CRP LM
- 1x Coax LM

Custom sensing elements
Custom electronics

Currently all sensors in GAr atmosphere
Electronics for LAr level meter
Cable for LAr level meter

Coaxial Cable, FEP Sheath RG316/U

<table>
<thead>
<tr>
<th>Characteristic resistance</th>
<th>50 Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attenuation per 100 m</td>
<td></td>
</tr>
<tr>
<td>100 MHz:</td>
<td>37 dB</td>
</tr>
<tr>
<td>200 MHz:</td>
<td>47 dB</td>
</tr>
<tr>
<td>1000 MHz:</td>
<td>102 dB</td>
</tr>
<tr>
<td>Internal conductor:</td>
<td>Silver-plated steel strand 7 x 0.17 mm</td>
</tr>
<tr>
<td>Dielectric:</td>
<td>PTFE Ø 1.52 mm</td>
</tr>
<tr>
<td>Shield braiding:</td>
<td>Silver-plated copper</td>
</tr>
<tr>
<td>Sheath:</td>
<td>FEP, brown</td>
</tr>
<tr>
<td>Outer diameter:</td>
<td>Ø 2.5 ±0.1 mm</td>
</tr>
<tr>
<td>Temperature range:</td>
<td>-70 °C → +200 °C</td>
</tr>
<tr>
<td>Weight approx.:</td>
<td>0.5 kg / 25 m coil</td>
</tr>
<tr>
<td></td>
<td>2.1 kg / 100 m coil</td>
</tr>
</tbody>
</table>

Used inside and outside the detector to connect sensors to flanges and then to electronics
Elementary but comprehensive view of all the electrical parts on the CRP. Important also to keep track of internal reference to GND.
Fixation patch panels
Fixation Thermometers
Details PCB for pulsing

To Anode Strips

KEL connector

... 32 ch

Pulse from flange

C. Cantini, ETHZ
Prototype hereafter. Based on sensor_list_666, numbers of connectors may slightly vary.
3M connectors matching Thermometers connectors, SUBD50 towards flanges
Dimension 390x100 mm² – can be adapted as needed
Fixation holes to match SS CRP structure
Prototype to test spark free connections in argon gas arranged in multipin
Makor cylinder technique – two macor cylinders inserted one into the other to provide isolation
Dimension here is 10 cm OD
Bridge needed to electrically connect adjacent 50x50 cm² anodes

- 20 cm long flat cable 68c, 0.635 mm pitch, 30 AWG

- 300 bridge per 9m² module needed
 - Several options under consideration – see backup
 - 600 KEL 8925E-068-179-F (receptacles to be crimped on cable)
 - 720 KEL 8913-068E/R-178MS-A-F (smd connectors for anode)
Cryo - Cameras - hardware

Box with:
- Fan
- Ground electrical link
- 5V power supply
- Ethernet switch
- 6 x Raspberry module V3
- Max length tested in between camera and Raspberry: 8 m

Each Raspberry module:
- HDMI output
- 2x USB output
- Ethernet output
- 16 Gb SD Card with Raspian Linux OS

2 x 3 camera modules connected to the camera box

Camera box build for the Fermilab
RaspBerry Camera in Liquid Argon during the CRP test

Condition of the test:
- RaspBerry Pi close to screen
- Camera module immersed in the liquid Argon
- Camera checking below the CRP

View from camera:
- Few ice block swimming in the Ar
- Distance in between 10cm to 2 m
3 x 1 x 1: WA105 cameras positioning

2 x RaspBerrys box connected with:
- ethernet cable
- 220V cable

4 cameras for the top in gaz Argon:
- one for each side
- one watching also the HV feedthrough
- (4 meters length cable)

1 camera for the bottom in liqAr:
- watching LEMs (6 meters length cable)
On the RaspBerry camera box:
- All cameras use the Raspian video viewer software (raspivid) and the video stream is redirected to the network in using gstream library and in specifying a dedicated port.

On computers:
- In installing gstream library, any computers (windows or linux) can be able to show all cameras with a correct fluidity (10 to 25 frames/sec)
https://gstreamer.freedesktop.org/