D meson nuclear modification factor and azimuthal anisotropy in PbPb at 5.02 TeV with CMS

Jing Wang on behalf of the CMS Collaboration

2nd International Workshop on QCD Challenges from pp to AA
31 October - 3 November 2017
Puebla (Mexico)
Why study heavy flavors in HI?

Heavy quarks are good probe of QGP!

- Produced mainly via initial hard scatterings ($m_c, m_b \gg T_{QGP}$)
 - Experience the whole evolution of the medium
- Production cross section calculable with pQCD ($m_c, m_b \gg \Lambda_{QCD}$)
- Strongly interact with the deconfined medium
Why study heavy flavors in HI?

Heavy quarks are good probe of QGP!
- Produced mainly via initial hard scatterings ($m_c, m_b \gg T_{QGP}$)
 - Experience the whole evolution of the medium
- Production cross section calculable with pQCD ($m_c, m_b \gg \Lambda_{QCD}$)
- Strongly interact with the deconfined medium

What information can we get?
- Energy loss in the medium
 - Pictures
 - pQCD: Collisional + Radiative
 - AdS/CFT: drag force
 - Depends on (pQCD)
 - color charge and quark mass (dead cone effect [1])
 - $\Delta E_g > \Delta E_c > \Delta E_b$
 - medium density and path length

Why study heavy flavors in HI?

Heavy quarks are good probe of QGP!
- Produced mainly via initial hard scatterings ($m_c, m_b \gg T_{QGP}$)
 - Experience the whole evolution of the medium
- Production cross section calculable with pQCD ($m_c, m_b \gg \Lambda_{QCD}$)
- Strongly interact with the deconfined medium

What information can we get?
- Energy loss in the medium
 - Pictures
 - pQCD: Collisional + Radiative
 - AdS/CFT: drag force
 - Depends on (pQCD)
 - color charge and quark mass (dead cone effect [1])
 - $\Delta E_g > \Delta E_c > \Delta E_b$
 - $R_{AA}^{light} < R_{AA}^D < R_{AA}^B$
 - medium density and path length
- Collective flow
 - measurement of the interaction strength

D⁰ meson production

- c → D⁰: O(50%) of c cross-section
- D⁰ → Kπ: 3.93 ± 0.04%
- D⁰ cτ = 122.9 µm
Datasets
• LHC Run II at 5.02 TeV in 2015
• Large minbias and centrality triggered samples
• Dedicated **HLT D⁰ filters** to enhance the statistics at very high \(p_T \)

Hardware L1 jet triggers selection

Track selection in software triggers

D⁰ selection

- Level-1 (L1) jet algorithm with online background subtraction
- Track seed \(p_T \) cut applied:
 - \(p_T > 2 \text{ GeV} \) for pp
 - \(p_T > 8 \text{ GeV} \) for PbPb
- D⁰ online reconstruction
 - Loose selection based on D⁰ vertex displacement
D⁰ reconstruction

- Primary vertex reconstruction *several tracks*
- D⁰ candidates (vertex) reconstruction *pairing two tracks + kinematic fitter*
- D⁰ candidates selection (TMVA) *decay topology*
 - Pointing angle (α) < ~0.12
 - 3D decay length (d₀) normalized by its error > ~4
 - Secondary vertex probability > ~0.1
 - Distance of Closest Approach (DCA) < ~0.008 cm
D⁰ reconstruction

- **Primary vertex reconstruction** *several tracks*
- **D⁰ candidates (vertex) reconstruction** *pairing two tracks + kinematic fitter*
- **D⁰ candidates selection (TMVA)** *decay topology*
 - Pointing angle (α) < ~0.12
 - 3D decay length (d_0) normalized by its error > ~4
 - Secondary vertex probability > ~0.1
 - Distance of Closest Approach (DCA) < ~0.008 cm
- **Raw yields extraction** *Invariant mass*

Mass distributions fitted by
- Double gaussian *(Signal)*
- 3rd order polynomial *(Combinatorial)*
- Single gaussian *(K-π swapped)*
 - No PID: Candidates with wrong mass assignment

arXiv: 1708.04962
Extraction of prompt fraction with data

- Prompt: D^0 mesons coming from c-quark fragmentation
- Extract prompt fraction with data (new method!)
- Different shapes of DCA distributions of prompt and non-prompt D^0

Prompt:

Non-prompt:

Prompt: D^0 mesons coming from c-quark fragmentation

Extract prompt fraction with data (new method!)

Different shapes of DCA distributions of prompt and non-prompt D^0
Extraction of prompt fraction with data

- Prompt: D^0 mesons coming from c-quark fragmentation
- Extract prompt fraction with data (new method!)
- Different shapes of DCA distributions of prompt and non-prompt D^0
- The shapes of the template of DCA distributions from MC
Prompt D^0 p_T-differential cross-section

- p_T range covers from 2 to 100 GeV/c (wide p_T range!)
- Compared with the FONLL [1] and GM-VFNS [2] predictions

Prompt D^0 R_{AA} in PbPb at 5.02 TeV

$|y| < 1$, Centrality **0-100%**

- Nuclear modification factor
 \[
 R_{AA} = \frac{1}{T_{AA}} \frac{dN_{PbPb}}{dp_T} / \frac{d\sigma_{pp}}{dp_T}.
 \]
- Strong suppression at p_T 5-8 GeV/c
- No significant collision energy dependence compared with 2.76 TeV

[Graph showing R_{AA} vs. p_T]

arXiv: 1708.04962
Prompt $D^0 R_{AA}$ in PbPb at 5.02 TeV

Centrality 0-100%

$27.4 \text{ pb}^{-1} (5.02 \text{ TeV pp}) + 530 \mu\text{b}^{-1} (5.02 \text{ TeV PbPb})$

CMS Supplementary

$D^0 + \bar{D}^0$

R_{AA}

$|y| < 1$

Centrality 0-100%

T_{AA} and lumi. uncertainty

$|y| < 1$

Cent. 0-100%

p_T (GeV/c)

R_{AA}

$27.4 \text{ pb}^{-1} (5.02 \text{ TeV pp}) + 530 \mu\text{b}^{-1} (5.02 \text{ TeV PbPb})$

CMS Supplementary

$D^0 + \bar{D}^0$

R_{AA}

$|y| < 1$

Centrality 0-10%

Cent. 0-10%

p_T (GeV/c)

arXiv: 1708.04962
Prompt D^0 R_{AA} in PbPb at 5.02 TeV

$|y| < 1$, Centrality 0-100%

- Comparison with charged hadrons
 - Similar suppression in a wide kinematic range
 - Hint of less suppression of D^0 at low p_T?
 - To be studied with higher statistics data to be taken in 2018 and HLLHC

- Comparison with $B^+ $ meson
 - No significant meson flavor dependence of R_{AA} at high p_T with the current accuracy
 - $B\rightarrow D$ analysis is on going to reach lower p_T
Prompt $D^0 R_{AA}$ in PbPb at 5.02 TeV

$|y| < 1$, Centrality 0-100%

- Comparison with **charged hadrons**
 - Similar suppression in a wide kinematic range
 - Hint of less suppression of D^0 at low p_T?
 - To be studied with higher statistics data to be taken in 2018 and HLLHC

- Comparison with **B^+ meson**
 - No significant meson flavor dependence of R_{AA} at high p_T with the current accuracy
 - $B \rightarrow D$ analysis is ongoing to reach lower p_T

- Comparison with **nonprompt J/ψ**
 - Hint of meson flavor dependence of R_{AA} at low p_T

JHEP 04 (2017) 039
arXiv:1705.04727
CMS-PAS-HIN-16-025
arXiv: 1708.04962
Prompt D^0 R_{AA} in PbPb at 5.02 TeV

$|y| < 1$, Centrality 0-100%

Comparison with theoretical predictions

- S. Cao et al. [1] (Improved Langevin eq, Linearized Boltzmann)
- M. Djordjevic [2] (pQCD calculations in a finite size optically thin dynamical QCD medium)
- CUJET 3.0 [3] (jet quenching model based on DGLV opacity expansion theory)
- AdS/CFT [4] (a model based on the anti-de Sitter/conformal field theory)

arXiv: 1708.04962

Jing Wang (MIT), D meson R_{AA} and v_n in PbPb collisions with CMS, Challenges2017 (Puebla)
Prompt $D^0 R_{AA}$ in PbPb at 5.02 TeV

$|y| < 1$, Centrality 0-10%

- Comparison with theoretical predictions
 - S. Cao et al. [1] (Improved Langevin eq, Linearized Boltzmann)
 - M. Djordjevic [2] (pQCD calculations in a finite size optically thin dynamical QCD medium)
 - CUJET 3.0 [3] (jet quenching model based on DGLV opacity expansion theory)
 - AdS/CFT [4] (a model based on the anti-de Sitter/conformal field theory)
 - Vitev et al. [5] (jet propagation in matter, soft-collinear effective theory with Glauber gluons (SCETG))
 - PHSD [6] (Parton-Hadron-String Dynamics transport approach)

$|y| < 1$, Centrality 0-10%

R_{AA}

$D^0 + \bar{D}^0$

CMS

$27.4 \text{ pb}^{-1} (5.02 \text{ TeV pp}) + 530 \mu \text{b}^{-1} (5.02 \text{ TeV PbPb})$

R_{AA} uncertainty

T_{AA} and lumi.

$p_T (\text{GeV/c})$

$D^0 R_{AA}$ in PbPb at 5.02 TeV

Azimuthal anisotropy

- The azimuthal anisotropy can be characterized by the Fourier coefficients v_n in the azimuthal angle (ϕ) distribution of the hadron yield

$$E \frac{d^3N}{d^3p} = \frac{1}{2\pi} \frac{d^2N}{p_t dp_t dy} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos[n(\phi - \Psi_r)] \right),$$

- Elliptic flow: v_2
- Triangular flow: v_3

- Azimuthal anisotropy origins from
 - low p_T
 - collective motion in the thermalized medium
 - fluctuation (v_3)
 - high p_T
 - path length dependence of the energy loss
Scalar Product Method

- v_n coefficient can be expressed in terms of Q-vectors as

$$v_n \{SP\} = \frac{\langle Q_{n,\bar{D}^0} Q_{nA}^* \rangle}{\sqrt{\langle Q_{nA} Q_{nB}^* \rangle \langle Q_{nA} Q_{nC}^* \rangle \langle Q_{nB} Q_{nC}^* \rangle}},$$

$$Q_n = \sum_{k=1}^{M} \omega_k e^{i n \phi_k},$$

Scaling factor from 3 sub events

<table>
<thead>
<tr>
<th>sub evts</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF-</td>
<td>HF-</td>
<td>Tracker</td>
<td></td>
</tr>
<tr>
<td>HF+</td>
<td>towers</td>
<td>towers</td>
<td>tracks</td>
</tr>
<tr>
<td>M</td>
<td>E_T</td>
<td>E_T</td>
<td>p_T</td>
</tr>
<tr>
<td>ω_k</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Extraction of D^0 v_n

- Simultaneous fit on invariant mass distribution and v_n vs mass

$$v_{n}^{S+B}(m_{inv}) = \alpha(m_{inv})v_{n}^{S} + [1 - \alpha(m_{inv})]v_{n}^{B}(m_{inv})$$

- v_n^S: v_n of signal D^0
 - fit parameter
- other terms:
 - $v_n^{S+B}(m_{inv})$: v_n of all D^0 candidates
 - $v_n^{B}(m_{inv})$: v_n of combinatorial background, modeled by a linear function
 - $\alpha(m_{inv})$: signal fraction from invariant mass spectra fit

arXiv: 1708.03497
Prompt $D^0 v_2$ in PbPb at 5.02 TeV

- Positive prompt $D^0 v_2$ observed in studied p_T range
 - Low p_T: charm quarks take part in the collective motion
 - High p_T: indicates path length dependence of energy loss
- Peaks around p_T at 3 GeV/c, then decreases vs p_T

arXiv: 1708.03497
Prompt D⁰ v₂ vs. charged particles v₂

- Low p_T: v₂ (prompt D⁰) < v₂ (charged particles)
 - Difference in most central events is smaller
 - Hint of smaller centrality dependence than charged particles
- High p_T: v₂ (prompt D⁰) ≈ v₂ (charged particles)
 - Consistent with ΔE (charm) ≈ ΔE (light quark) observed in R_{AA}
- Similar p_T dependence

arXiv: 1708.03497
Prompt $D^0 v_2$ vs. theoretical calculations

Models need to describe both R_{AA} and v_n results simultaneously in a wide kinematic range

- CMS PbPb $\sqrt{s_{NN}} = 5.02$ TeV

Calculations for prompt D^0
- LBT
- SUBATECH
- PHSD
- CUJET 3.0
- TAMU

PRC 94 (2016) 014909
PRC 91 (2015) 014904
PRC 93 (2016) 034906
JHEP 02 (2016) 169
PLB 735 (2014) 445

arXiv: 1708.03497
Prompt $D^0 v_3$ in PbPb at 5.02 TeV

- First measurements of $D^0 v_3$
- Low p_T: v_3 (prompt D^0) > 0; High p_T: v_3 (prompt D^0) ≈ 0
- Peaks around 3 GeV/c
- Little centrality dependence

arXiv: 1708.03497
Prompt D^0 v_3 vs. charged particles v_3

- Low p_T: v_3 (prompt D^0) < v_3 (charged particles)
 - Difference in most central events is smaller
- High p_T: v_3 (prompt D^0) ≈ v_3 (charged particles)
- Similar p_T dependence
- Both have little centrality dependence

arXiv: 1708.03497
Prompt $D^0 v_3$ vs. theoretical calculations

- Models need to describe both R_{AA} and v_n results simultaneously in a wide kinematic range

CMS PbPb $\sqrt{s_{NN}} = 5.02$ TeV

- Charged particle, $|y| < 1.0$
- $0-10\%$
- $10-30\%$
- $30-50\%$

Calculations for prompt D^0
- LBT
- PHSD
- SUBATECH

arXiv: 1708.03497

PRC 94 (2016) 014909
PRC 91 (2015) 014904
PRC 93 (2016) 034906
What can be expected at the HL-HLC era?

High-Luminosity LHC!

- A more solid conclusion on the flavor dependence of energy loss will be addressed
- Stronger constraints on the theory models

CMS Projection

CMS-FTR-17-002
Summary

- $D^0 R_{AA}$ in PbPb at 5.02 TeV
 - Strong suppression
 - No significant flavor dependence at high p_T
 - Hint of flavor dependence at low p_T
 - $B \to D$ analysis is on going to reach lower p_T

- $D^0 v_2$ and v_3 measured in 3 centrality ranges in PbPb at 5.02 TeV
 - First measurement of $D^0 v_3$
 - Low p_T: v_n (prompt D^0) < v_n (charged particle)
 - High p_T: v_n (prompt D^0) ≈ v_n (charged particle)

- Results provide important inputs for theoretical models

- We can expect much more precise measurements in Run 3 and HL-LHC
Thanks for your attention!
D⁰ measurements with CMS in Run I

Run I 2.76 TeV
- Dataset: MB events
- p_T: 2-40 GeV/c
- pp reference: data-extrapolated and FONLL

Run II 5.02 TeV
- Dataset: MB + D trigger events
- p_T: 2-100 GeV/c
- pp reference: direct data

Measurements reaching very high p_T for the first time!

CMS-PAS-HIN-15-005
Systematic uncertainties summary

Signal extraction systematics ~5%
- Varying signal and background fit functions

D meson selection ~13%
- Comparing data and MC driven efficiencies of the different cut selections
- Systematics on trigger efficiency
- Tracking efficiency systematic (evaluated by 2 and 4 prongs D⁰ decays)

B-feed down uncertainty ~8%
- Obtained by comparing f_{prompt} estimation with alternative method based on decay length and FONLL predictions

PbPb, Centrality 0-100%

- 25.8 pb⁻¹ (5.02 TeV pp) + 404 μ b⁻¹ (5.02 TeV PbPb)
- CMS **D⁰ R_{AA}, |y| < 1**
- Overall Normalization (N_{MB}, Lumi)
- Total Systematics
- Signal Extraction
- D Meson Selection and Correction
- B feed down subtraction
High-Level-Trigger (HLT) D^0 triggers

- Level-1 (L1) jet algorithm with online background subtraction
 - $p_T > 2$ GeV for pp
 - $p_T > 8$ GeV for PbPb

D^0 selection

- 5.02 TeV pp collisions
- Extend to D^0 high p_T to 200 GeV/c

- D^0 online reconstruction
- Loose selection based on D^0 vertex displacement
Heavy flavor measurements with CMS

LHC Run I
2.76 PbPb + 5.02 pPb

1. b-jet R_{AA} in PbPb
2. J/ψ R_{AA} in PbPb
3. D^0 meson R_{AA} in PbPb
4. B meson R_{pPb} in pPb

[2] CMS-PAS-HIN-12-014
CMS detector

Inner tracker: charged particles

Muon detectors

EM and hadronic calorimeters
Photons, Jet

Forward Calorimeter:
MB triggers, centrality

Muon | $|\eta| < 2.4$
---|---
HCAL | $|\eta| < 5.2$
ECAL | $|\eta| < 3.0$
Tracker | $|\eta| < 2.5$
High-Level-Trigger (HLT) D^0 triggers

Triggers performance

CMS Preliminary

HLT D meson trigger efficiency

- $\sqrt{s}=5.02$ TeV pp
- $404 \mu b^{-1}$ (5.02 TeV PbPb)

- D^0 trigger $p_T \geq 8$
- D^0 trigger $p_T \geq 15$
- D^0 trigger $p_T \geq 20$
- D^0 trigger $p_T \geq 30$

Jing Wang (MIT), D meson R_{AA} and v_n in PbPb collisions with CMS, Challenges2017 (Puebla)

35
Systematics

pp

25.8 pb\(^{-1}\) (5.02 TeV pp)

PbPb 0-10%

25.8 pb\(^{-1}\) (5.02 TeV pp) + 404 \(\mu\) b\(^{-1}\) (5.02 TeV PbPb)

CMS Performance

- \(D^0 d\sigma / dp_T\), \(|y| < 1\)

Systematical Uncertainty

- Overall Normalization (Lumi + BR)
- Total Systematics
- Signal Extraction
- D Meson Selection and Correction
- B feed down subtraction

Luminosity

Overall Normalization (Lumi + BR)
Systematic uncertainties from non-prompt D^0 are evaluated in a data driven method based on:

- v_n of D^0 with all analysis cut and w/o b_0 cut
- Fractions of prompt D^0 with all analysis cut and w/o b_0 cut

All analysis cut:

$$v_{n,1}^{\text{sig}} = f_{p,1} v_{n}^{p} + (1-f_{p,1}) v_{n}^{\text{np}}$$

Without b_0 cut:

$$v_{n,2}^{\text{sig}} = f_{p,2} v_{n}^{p} + (1-f_{p,2}) v_{n}^{\text{np}}$$

$$v_{n}^{p} = v_{n,1}^{\text{sig}} + \frac{1-f_{p,1}}{f_{p,1}-f_{p,2}} (v_{n,1}^{\text{sig}} - v_{n,2}^{\text{sig}})$$

D^0 v_n with all analysis cuts as central value

As systematics from non-prompt D^0