Study of the event by event
mean transverse momentum

fluctuations in small collision
systems at LHC energies with
percolation color sources

*Pablo Fierro
Irais Bautista
Cristal Robles

-

== QUD Tmillenges
' from Do 1o AA

From October 315 to November 3@

1



Motivation

m Event by event fluctuations of
thermodynamic quantities were
proposed as a probe for a phase
transition from hadronic matter to
Quark Gluon Plasma (QGP).

" Fluctuations in thermodynamic
quantities, such as temperature can
be reflected in dynamical event by
event fluctuations of the mean
transverse  momentum (pr) in high
energy heavy ion collisions.

= Recenlftly, collective signatures have
been opbserved in small collision

systems.
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= Dynamical fluctuations of the (pr) increases by many
kinds of correlations of the (pr) of the final states of the
generated particles (resonance decays, jets, etc.).




The Color String Percolation Model n

m Phase transition can be described by percolation theory by
using crifical exponents and power laws. We use the transverse
area of color flux tubes (strings) that represents the stretched
color fields of the colliding partons.
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m A critical parameter is the string density
51

which is given by: Cl‘ _
Sn

m Given that we are interested in proton-proton collisions, the
string density is now given by:

T i
G = R_ N
P

Where 710 is the radius of a single string and R, is the proton
radius.



m A cluster is considered as a single string as the vectorial n
sum of the strings that compose it and thus having a factor
that supresses color production called the color reduction
factor (sacaling function).
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Event by event (p; ) Fluctuations on the
SPM

| Wdata — Wrando
2 Are measured with: - data random
p
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m With: W =

= F,. measures the fluctuations as a function of the
number of participants in heavy ion collisions.



= We can understand EbE (pr) fluctuations as following:

= At low Ct: we have very little fluctuations e @ e

= Over critical ¢*: we have no fluctuations / g%ﬁ%?g\}

» Below critical ¢*: fluctuations are maximall /s Bag,
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= With this in mind we can get the one particle

variance and the event variance  z; = pr. — (pr)
v, | .

and 7, = Z z; respectively.
j=1

m Thus:
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= By having (pr)as a function of the number of
participants:
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m For this study the sums are taken as the average and n
the terms n; and S;/S,,, are taken as Nyand 51/5,
respectively.

= Thus having:




m By exapnding the square powers and taking the square
roofs:
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= And finally we get the EbE (pr) fluctuation as:
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Finding the critical parameters

® [n general, for comparing with experimental data we first
need to make a fit on the minimum bias transverse
momentum distributions using:
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® Then we fit again with the values of the parameter to the
transverse momentum distributions by multiplicty class

using:
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= For PbPb collisions we tfook data from [5] o get a set m
of data given by centrality class.

= The F(¢")is taken from [6]:
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= Thus having F'(¢) as:
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= And by solving numerically the equation:
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® The area of a cluster is given by:
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® The number of strings is given by:

m And thus:
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m As shown before:

1
<pT> X F(CF\M)

k
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m With k a proportionality constant given by:

k = <pT>dataF(<§VA)

= With (p7)data taken from [7]

m Thus:




m Now we can calculate FpT for PbPb collisions as:
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m For pp collisions we fit:
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m Taking the string density for high multiplicity quM for pp
instead of the string density for nuclear collisions (%, 4.

m For we llok to calculate the color reduction factor por pp
collisions by multiplicity class F(¢},).
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= Fits [4] on the pr distributions [8] on pp collisions at Vs = 0.9, 2.76, 7 TeV
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Vs(TeV) a Po a
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We can calculate the (pr) and plot it, same with the
color reduction factor.
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m Color reduction factor F(¢') and {(pr) by multiplicity class with data
from [5] and reported in [4].



= As seen before, the string density depends on m
centrality, thus for pp collisions we most propose
an effective centrality
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= With these aproximation we can write the EbE (pr)
fluctuations for pp collisions as:
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m However, in order to compare with the experimental
data, we need to calculate the same quantity that was
measured in [1], thus come the two particle correlator
for multiplicity class.
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m That quantifies the dynamical fluctuations in units of the
mean transverse momenfum.

m With:
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m [n [1] the EbE (pr)fluctuations are reported as
that supresses statistical uncertanties:

M/M(pT)m

= However C,, relates with I, as:

var(pr)
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= O, for PbPb with data from [5] and vCm/M(pr)m measured and
reported in [1] compared with our calculation.
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Conclusions
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m A slight chon% e of slope suggests the phase transition as seen in  [1] (right side).
This m|gh’r be because of the system'’s size, not all correlations are destroyed and
the systems have no time to thermalize.

= Where the power law fitted to 7 TeV pp ALICE is f(z) = a2z’ wWith a =2.26 and b =-3.9
and b = -4.1 for the fit on 7 TeV SPM
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= Moreover we can see the SPM is in agreement with experimental
results without jet bias (see Irais talk).
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